找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Moduli; Jan Arthur Christophersen,Kristian Ranestad Conference proceedings 2018 Springer Nature Switzerland AG 2018 algebraic

[復(fù)制鏈接]
樓主: fumble
11#
發(fā)表于 2025-3-23 11:15:17 | 只看該作者
Stratifying Quotient Stacks and Moduli Stacks,.∕.], where . is a projective scheme and . is a linear algebraic group with internally graded unipotent radical acting linearly on ., in such a way that each stratum [.∕.] has a geometric quotient .∕.. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) such that each stratum has a coarse moduli space.
12#
發(fā)表于 2025-3-23 14:47:37 | 只看該作者
The Moduli Spaces of Sheaves on Surfaces, Pathologies and Brill-Noether Problems,rill-Noether problem for rational surfaces. In order to highlight some of the difficulties for more general surfaces, we show that moduli spaces of rank 2 sheaves on very general hypersurfaces of degree . in . can have arbitrarily many irreducible components as . tends to infinity.
13#
發(fā)表于 2025-3-23 19:53:37 | 只看該作者
Geometric Invariant Theory of Syzygies, with Applications to Moduli Spaces,ed to make some progress in this program, that of polarized K3 surfaces of odd genus, and of genus six canonical curves. Applications of our results include effectivity statements for divisor classes on the moduli space of odd genus K3 surfaces, and a new construction in the Hassett-Keel program for the moduli space of genus six curves.
14#
發(fā)表于 2025-3-23 23:13:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:11:29 | 只看該作者
Jan Arthur Christophersen,Kristian RanestadFirst publication of surveys on recent developments on moduli spaces in algebraic geometry.Comprehensive collection.Will serve both as a reference and a guide to important directions in the geometric
16#
發(fā)表于 2025-3-24 09:04:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:26 | 只看該作者
Torben Kuhlenkasper,Andreas Handl case of where the fibration is .?×?., the product of a .3 surface and an elliptic curve. Oberdieck and Pandharipande conjectured (Oberdieck and Pandharipande, ., Progress in Mathematics, vol. 315 (Birkh?user/Springer, Cham, 2016), pp. 245–278, arXiv:math/1411.1514) that the partition function of th
18#
發(fā)表于 2025-3-24 16:37:53 | 只看該作者
19#
發(fā)表于 2025-3-24 20:15:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇远县| 甘孜| 保德县| 陕西省| 廉江市| 嘉义市| 综艺| 伊吾县| 五峰| 五华县| 利津县| 龙川县| 东光县| 若尔盖县| 疏附县| 江油市| 二连浩特市| 侯马市| 万载县| 涞水县| 博罗县| 永寿县| 克什克腾旗| 大兴区| 平阴县| 象山县| 正宁县| 晋江市| 永福县| 体育| 通辽市| 阳谷县| 四会市| 南江县| 仪陇县| 大关县| 贡山| 调兵山市| 邵阳县| 东乡县| 长泰县|