找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2

[復制鏈接]
樓主: 鏟除
21#
發(fā)表于 2025-3-25 05:46:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:40 | 只看該作者
Einführung in die pharmazeutische Chemiee show that a compact, simply connected Riemannian 4- or 5-manifold of quasipositive curvature and maximal symmetry rank must be diffeomorphic to the 4-sphere, complex projective plane or the 5-sphere.
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:26 | 只看該作者
26#
發(fā)表于 2025-3-26 02:13:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:46:42 | 只看該作者
An Introduction to Exterior Differential Systems,ior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and sketch a proof of the theorem of Cartan–K?hler about the analytical solutions to an analytical exterior differential system.
28#
發(fā)表于 2025-3-26 12:27:18 | 只看該作者
Physikalisch-chemische Natur der Schlacken,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
29#
發(fā)表于 2025-3-26 13:37:25 | 只看該作者
Lectures on ,-Sasakian Manifolds,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
30#
發(fā)表于 2025-3-26 18:34:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
榆树市| 兴宁市| 容城县| 丹凤县| 瑞金市| 印江| 卢湾区| 波密县| 新泰市| 卢龙县| 措勤县| 嵊州市| 城固县| 河曲县| 六盘水市| 巴东县| 交口县| 仁寿县| 公主岭市| 墨竹工卡县| 常山县| 万年县| 体育| 夏津县| 加查县| 东辽县| 汉川市| 石渠县| 富蕴县| 江门市| 白银市| 民勤县| 东港市| 平阳县| 安岳县| 延津县| 新邵县| 南部县| 永嘉县| 融水| 黎城县|