找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2

[復(fù)制鏈接]
樓主: 鏟除
21#
發(fā)表于 2025-3-25 05:46:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:40 | 只看該作者
Einführung in die pharmazeutische Chemiee show that a compact, simply connected Riemannian 4- or 5-manifold of quasipositive curvature and maximal symmetry rank must be diffeomorphic to the 4-sphere, complex projective plane or the 5-sphere.
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:26 | 只看該作者
26#
發(fā)表于 2025-3-26 02:13:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:46:42 | 只看該作者
An Introduction to Exterior Differential Systems,ior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and sketch a proof of the theorem of Cartan–K?hler about the analytical solutions to an analytical exterior differential system.
28#
發(fā)表于 2025-3-26 12:27:18 | 只看該作者
Physikalisch-chemische Natur der Schlacken,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
29#
發(fā)表于 2025-3-26 13:37:25 | 只看該作者
Lectures on ,-Sasakian Manifolds,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
30#
發(fā)表于 2025-3-26 18:34:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 封开县| 麦盖提县| 巩留县| 宜城市| 诏安县| 日照市| 大化| 平南县| 云霄县| 新邵县| 体育| 扶风县| 开阳县| 正镶白旗| 镇沅| 扬州市| 惠来县| 富川| 南开区| 万宁市| 民乐县| 庆安县| 湘乡市| 陕西省| 岳阳市| 黄石市| 达州市| 焉耆| 平凉市| 隆林| 甘泉县| 阜平县| 武邑县| 福清市| 大英县| 北流市| 宁远县| 孟连| 明溪县| 大邑县|