找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Holomorphic Mappings; Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 13607|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:40:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometry of Holomorphic Mappings
編輯Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov
視頻videohttp://file.papertrans.cn/384/383810/383810.mp4
概述Emphasizes geometric methods, such as the Scaling method and the Reflection principle.Features improved and simplified proofs of important results.Offers a unified treatment theory of boundary behavio
叢書(shū)名稱(chēng)Frontiers in Mathematics
圖書(shū)封面Titlebook: Geometry of Holomorphic Mappings;  Sergey Pinchuk,Rasul Shafikov,Alexandre Sukhov Book 2023 The Editor(s) (if applicable) and The Author(s)
描述.This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle.?..Geometry of Holomorphic Mappings.?will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference..
出版日期Book 2023
關(guān)鍵詞holomorphic mappings; boundary regularity; analytic continuation; invariant metrics; Segre varieties; ref
版次1
doihttps://doi.org/10.1007/978-3-031-37149-3
isbn_softcover978-3-031-37148-6
isbn_ebook978-3-031-37149-3Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Geometry of Holomorphic Mappings影響因子(影響力)




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings被引頻次




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings年度引用




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings讀者反饋




書(shū)目名稱(chēng)Geometry of Holomorphic Mappings讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:19:34 | 只看該作者
Geometry of Holomorphic Mappings978-3-031-37149-3Series ISSN 1660-8046 Series E-ISSN 1660-8054
地板
發(fā)表于 2025-3-22 05:06:21 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:23 | 只看該作者
https://doi.org/10.1007/978-3-322-98478-4In this chapter we review some standard definitions and results in complex analysis and lay out the technical framework for the core material of the book.
6#
發(fā)表于 2025-3-22 14:20:35 | 只看該作者
https://doi.org/10.1007/978-3-662-36815-2In this chapter we present some classical results in several complex variables that relate boundary smoothness of domains with the geometric properties of holomorphic maps between these domains.
7#
發(fā)表于 2025-3-22 17:33:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:23:12 | 只看該作者
https://doi.org/10.1007/978-3-8351-9226-3In this chapter we prove, using the scaling method, smooth extension to the boundary of biholomorphic maps between strictly pseudoconvex domains
9#
發(fā)表于 2025-3-23 05:00:09 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 锡林浩特市| 龙岩市| 新竹市| 武鸣县| 东辽县| 美姑县| 镇平县| 河东区| 武隆县| 芷江| 潍坊市| 偏关县| 东丽区| 定南县| 凤山市| 贵州省| 阳曲县| 新蔡县| 达孜县| 甘肃省| 南投县| 大田县| 巨野县| 普宁市| 青海省| 红安县| 石阡县| 思南县| 山丹县| 时尚| 南阳市| 慈溪市| 宁阳县| 蒙阴县| 平泉县| 新宾| 福建省| 鸡东县| 德安县| 无为县|