找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg N. Karpenkov Textbook 2022Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2022

[復(fù)制鏈接]
樓主: 詞源法
31#
發(fā)表于 2025-3-26 21:57:58 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:42:46 | 只看該作者
,Methoden der Str?mungssichtbarmachung,In the beginning of this book we discussed the geometric interpretation of regular continued fractions in terms of LLS sequences of sails. Is there a natural extension of this interpretation to the case of continued fractions with arbitrary elements? The aim of this chapter is to answer this question.
34#
發(fā)表于 2025-3-27 11:04:02 | 只看該作者
35#
發(fā)表于 2025-3-27 17:21:24 | 只看該作者
https://doi.org/10.1007/978-3-662-43199-3In Chap. . we proved a necessary and sufficient criterion for a triple of integer angles to be the angles of some integer triangle. In this chapter we prove the analogous statement for the integer angles of convex polygons. Further, we discuss an application of these two statements to the theory of complex projective toric surfaces.
36#
發(fā)表于 2025-3-27 20:24:01 | 只看該作者
37#
發(fā)表于 2025-3-27 23:49:12 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:39 | 只看該作者
Semigroup of Reduced MatricesThere are several ways to construct reduced matrices, however as a rule they are closely related with each other. The reason for that might be the structure of the group. We should mention that the approach here is rather different to the classical approach for closed fields via Jordan blocks.
39#
發(fā)表于 2025-3-28 07:52:55 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:49 | 只看該作者
Lagrange’s TheoremThe aim of this chapter is to study questions related to the periodicity of geometric and regular continued fractions. The main object here is to prove Lagrange’s theorem stating that every quadratic irrationality has a periodic continued fraction, conversely that every periodic continued fraction is a quadratic irrationality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永康市| 孟连| 上林县| 广州市| 和林格尔县| 阿荣旗| 教育| 藁城市| 北辰区| 钟山县| 梁山县| 洮南市| 友谊县| 班玛县| 石门县| 望都县| 玛纳斯县| 资阳市| 凤冈县| 图们市| 彭阳县| 隆安县| 突泉县| 平顶山市| 于田县| 萝北县| 潜江市| 大足县| 阳原县| 大名县| 铜陵市| 衡阳县| 广东省| 湖南省| 巴东县| 万源市| 化隆| 辉南县| 同心县| 富锦市| 清丰县|