找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
51#
發(fā)表于 2025-3-30 10:21:43 | 只看該作者
Lorentzian Geometry and CR-Submanifolds,case (a) is mostly similar with the Riemannian case, but, the subcase (b) still remains an open problem since . Lorentzian is not compatible with the required Hermitian structure of .. Moreover, the geometry of subcase (c) is quite different for which we provide several new results. We also give interesting physical examples used in relativity.
52#
發(fā)表于 2025-3-30 12:23:21 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,ual-totally umbilical generic submanifolds. Furthermore, we show that a Lagrangian submanifold is of constant sectional curvature if the statistical shape operator and its dual operator commute. Similarly, we generalize several theorems in the classical CR-submanifold theory.
53#
發(fā)表于 2025-3-30 20:33:03 | 只看該作者
Submanifold Theory in Holomorphic Statistical Manifolds,ual-totally umbilical generic submanifolds. Furthermore, we show that a Lagrangian submanifold is of constant sectional curvature if the statistical shape operator and its dual operator commute. Similarly, we generalize several theorems in the classical CR-submanifold theory.
54#
發(fā)表于 2025-3-30 22:48:57 | 只看該作者
Miscellaneous Semiconductors,he doping of some polymers produces both n and p-type behavior up to metallic conductivities. This led to the discussion of new conduction mechanisms (e.g., solitons [15.2]) and stimulated practical applications such as a new type of a rechargeable battery.
55#
發(fā)表于 2025-3-31 02:20:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茌平县| 金坛市| 井冈山市| 卫辉市| 新田县| 南丰县| 昌图县| 泉州市| 山阴县| 临安市| 南木林县| 乐昌市| 叶城县| 鄂伦春自治旗| 鞍山市| 凤山县| 富蕴县| 莱州市| 宁河县| 枝江市| 措勤县| 且末县| 河间市| 应城市| 屏南县| 武定县| 正宁县| 舒兰市| 冕宁县| 竹北市| 虎林市| 正阳县| 沙洋县| 天台县| 简阳市| 剑河县| 北流市| 铜陵市| 手游| 如东县| 郯城县|