找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
11#
發(fā)表于 2025-3-23 13:32:54 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
12#
發(fā)表于 2025-3-23 17:15:43 | 只看該作者
Submersions of CR Submanifolds, . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
13#
發(fā)表于 2025-3-23 21:11:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:26 | 只看該作者
Paraquaternionic CR-Submanifolds,ebra of paraquaternionic numbers. The counterpart in odd dimension of a paraquaternionic structure was introduced in 2006 by S. Ianu?, R. Mazzocco and G.E. V?lcu and is referred to as a mixed 3-structure. It appears in a natural way on lightlike hypersurfaces in paraquaternionic manifolds. In this p
15#
發(fā)表于 2025-3-24 04:59:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-3582-2We exhibit the relationship between the second fundamental form and the Levi form of a CR submanifold . (in the sense of A. Bejancu, [.]) in a Hermitian (e.g., K?hlerian or locally conformal K?hler) manifold . and start a study of the CR extension problem from . to ..
16#
發(fā)表于 2025-3-24 09:37:27 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:16 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
18#
發(fā)表于 2025-3-24 18:15:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:14 | 只看該作者
CR-Doubly Warped Product Submanifolds,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青岛市| 交口县| 潮安县| 普兰店市| 谷城县| 卓资县| 香港| 嘉黎县| 浮山县| 永昌县| 大埔县| 阿荣旗| 湖北省| 定襄县| 福泉市| 呼和浩特市| 平武县| 邯郸县| 百色市| 延庆县| 益阳市| 乌恰县| 霞浦县| 芷江| 岱山县| 金堂县| 渭源县| 博兴县| 噶尔县| 沙田区| 安吉县| 彭州市| 修文县| 永宁县| 额尔古纳市| 洛隆县| 彭阳县| 乌恰县| 娱乐| 台南市| 延川县|