找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Ioana Cioranescu Book 1990 Kluwer Academic Publishers 1990 Cauchy prob

[復(fù)制鏈接]
查看: 53983|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:28:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems
編輯Ioana Cioranescu
視頻videohttp://file.papertrans.cn/384/383796/383796.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems;  Ioana Cioranescu Book 1990 Kluwer Academic Publishers 1990 Cauchy prob
出版日期Book 1990
關(guān)鍵詞Cauchy problem; Finite; Hilbert space; boundary element method; character; feedback; form; geometry; mapping
版次1
doihttps://doi.org/10.1007/978-94-009-2121-4
isbn_softcover978-94-010-7454-4
isbn_ebook978-94-009-2121-4
copyrightKluwer Academic Publishers 1990
The information of publication is updating

書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影響因子(影響力)




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems影響因子(影響力)學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems網(wǎng)絡(luò)公開度




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引頻次




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems被引頻次學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems年度引用學(xué)科排名




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems讀者反饋




書目名稱Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:39 | 只看該作者
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
板凳
發(fā)表于 2025-3-22 02:37:05 | 只看該作者
https://doi.org/10.1007/978-3-663-01878-0 a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
地板
發(fā)表于 2025-3-22 07:40:33 | 只看該作者
On the Topological Degree in Finite and Infinite Dimensions, a generalization of it to A proper mappings in Banach spaces. The connection with the Leray-Schauder degree is commented and some applications to the topological degree of normalized duality mappings are made.
5#
發(fā)表于 2025-3-22 10:22:15 | 只看該作者
https://doi.org/10.1007/978-94-009-2121-4Cauchy problem; Finite; Hilbert space; boundary element method; character; feedback; form; geometry; mapping
6#
發(fā)表于 2025-3-22 13:00:05 | 只看該作者
978-94-010-7454-4Kluwer Academic Publishers 1990
7#
發(fā)表于 2025-3-22 19:12:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:50:21 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:09 | 只看該作者
Analyse und Synthese von Schaltungen,In this chapter we shall characterize some classes of Banach spaces, among which strictly convex spaces, uniformly convex spaces and reflexive Banach spaces in terms of properties of the duality mapping such as continuity, injectivity or surjectivity. Some applications to L. and 1. spaces are given.
10#
發(fā)表于 2025-3-23 06:31:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中卫市| 泾源县| 赤峰市| 神木县| 姚安县| 广西| 南通市| 绩溪县| 朝阳区| 安多县| 镇平县| 木兰县| 涿鹿县| 米泉市| 固镇县| 遂昌县| 洛扎县| 鸡西市| 崇义县| 宜川县| 广灵县| 漳浦县| 新邵县| 米林县| 故城县| 扎兰屯市| 荣昌县| 西盟| 宝坻区| 公主岭市| 监利县| 昌都县| 黎平县| 陕西省| 民丰县| 彭水| 酒泉市| 高邮市| 突泉县| 南溪县| 郎溪县|