找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume II with a con Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif Textbook 2011 Springer-Verlag Berlin

[復制鏈接]
樓主: 宣告無效
51#
發(fā)表于 2025-3-30 10:33:04 | 只看該作者
The moduli space of stable curves,construct . as an analytic space, and then we show that this analytic space has a natural structure of algebraic space. After a utilitarian introduction to orbifolds and stacks, in particular to Deligne–Mumford stacks, we then show that . is just a coarse reflection of a more fundamental object, the
52#
發(fā)表于 2025-3-30 13:46:38 | 只看該作者
Line bundles on moduli,t. We introduce several natural bundles on moduli, including the Hodge bundle and the point bundles, and the stack divisors corresponding to the codimension one components of the boundary. We then discuss the theory of the determinant of the cohomology, which is well suited to producing line bundles
53#
發(fā)表于 2025-3-30 17:20:24 | 只看該作者
54#
發(fā)表于 2025-3-30 23:31:41 | 只看該作者
55#
發(fā)表于 2025-3-31 00:56:33 | 只看該作者
Smooth Galois covers of moduli spaces,act, since varieties of this kind, even when singular, have a naturally defined intersection theory. We describe this quotient representation, starting from the case of smooth curves where the constructions are considerably more transparent from a geometrical point of view. Using the theory of admis
56#
發(fā)表于 2025-3-31 08:56:56 | 只看該作者
57#
發(fā)表于 2025-3-31 11:05:56 | 只看該作者
Cellular decomposition of moduli spaces, which we review in Sections 5 and 6. The cells of the decomposition are labelled by ribbon graphs, and the decomposition itself is equivariant under the action of the Teichmüller modular group. We then extend this decomposition to the bordification of Teichmüller space introduced in Chapter XV. By
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
报价| 刚察县| 双柏县| 宁城县| 疏勒县| 三原县| 万盛区| 永顺县| 台东市| 九江县| 营口市| 长武县| 喀喇沁旗| 芒康县| 聊城市| 香河县| 象州县| 澎湖县| 五河县| 南和县| 荣昌县| 凌源市| 涡阳县| 井研县| 策勒县| 怀来县| 隆昌县| 舒兰市| 汝州市| 儋州市| 新津县| 广宁县| 昂仁县| 黔东| 江都市| 荣昌县| 深圳市| 西畴县| 子洲县| 泸定县| 岳阳市|