找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume I E. Arbarello,M. Cornalba,J. Harris Textbook 1985 Springer-Verlag New York 1985 Algebraic.Curves.Geom

[復(fù)制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 07:02:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:20 | 只看該作者
The Basic Results of the Brill-Noether Theory,o describe how the projective realizations of a curve vary with its moduli, and what it means, from this point of view, to say that a curve is “general” or “special.” Accordingly, we would like to know, first of all, what linear series can we expect to find on a general curve and, secondly, what the
24#
發(fā)表于 2025-3-25 16:17:00 | 只看該作者
,The Geometric Theory of Riemann’s Theta Function, important cases of them were classically known and, in a sense, provided a motivation for the entire theory. What we have in mind here are the classical theorems concerning the geometry of ..(.), that is, the geometry of Riemann’s theta function. Of course, these results are more than mere exemplif
25#
發(fā)表于 2025-3-25 22:16:50 | 只看該作者
Enumerative Geometry of Curves,merative problems that arise in the theory of curves and linear systems. While this is in some sense a quantitative approach, qualitative results may also emerge. For example, the answer to the enumerative question: “How many ..’s does a curve . possess” (Theorem (4.4) in Chapter VII) implies the ex
26#
發(fā)表于 2025-3-26 02:40:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南江县| 云阳县| 阿荣旗| 阿克陶县| 太和县| 丰城市| 墨脱县| 方山县| 永靖县| 夏津县| 宁安市| 甘孜县| 来安县| 息烽县| 蚌埠市| 丘北县| 凌云县| 介休市| 封丘县| 白朗县| 依兰县| 常宁市| 特克斯县| 桦南县| 合阳县| 临沧市| 通州区| 蓝田县| 密山市| 安阳县| 汝城县| 英吉沙县| 锡林郭勒盟| 宕昌县| 忻州市| 濮阳市| 富民县| 和平区| 肃南| 综艺| 全南县|