找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry in History; S. G. Dani,Athanase Papadopoulos Book 2019 Springer Nature Switzerland AG 2019 58-02, 58-03, 14-02, 53-02, 77-02, 30D

[復制鏈接]
樓主: corrupt
11#
發(fā)表于 2025-3-23 10:30:44 | 只看該作者
12#
發(fā)表于 2025-3-23 14:13:44 | 只看該作者
,The Poincaré Conjecture and Related Statements,imensional sphere. The statements, results and problems are equivalent forms, corollaries, strengthenings of this conjecture, or problems of a more general nature such as the homeomorphism problem, the manifold recognition problem and the existence problem of some polyhedral, smooth and geometric st
13#
發(fā)表于 2025-3-23 20:11:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:23:13 | 只看該作者
Fortgeschrittene PL/I-Techniken,hat some assertions made by philosophers from Greek antiquity have a definite topological content, even if they were stated more than two and a half millennia before the field of topology was born. He adhered completely to Aristotle’s theory of form which the latter developed especially in his biolo
15#
發(fā)表于 2025-3-24 05:48:22 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:03 | 只看該作者
Einführung in die Programmiersprache SIMULAhe article argues, by the movement from the primacy of geometrical to the primacy of algebraic thinking. The article also explores the ontological and epistemological aspects of this transition and the connections between modernist mathematics and modernist physics, especially quantum theory, in thi
17#
發(fā)表于 2025-3-24 14:34:29 | 只看該作者
18#
發(fā)表于 2025-3-24 18:51:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:30:26 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:03 | 只看該作者
https://doi.org/10.1007/978-3-8348-9640-7ope that this modern take on the old theorems makes this evergreen topic fresh again. We connect configuration theorems to completely integrable systems, identities in Lie algebras of motion, modular group, and other subject of contemporary interest.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
方山县| 基隆市| 南澳县| 汉中市| 长沙市| 鹿邑县| 乌拉特前旗| 繁昌县| 呈贡县| 辰溪县| 宝山区| 东乌| 北流市| 七台河市| 克拉玛依市| 海南省| 普陀区| 泌阳县| 白水县| 册亨县| 四子王旗| 姚安县| 富阳市| 宁南县| 镇平县| 台北县| 广西| 东港市| 夏津县| 秦安县| 杨浦区| 新沂市| 治县。| 承德市| 西丰县| 南城县| 海口市| 封丘县| 唐河县| 三明市| 新余市|