找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Vision; First International Minh Nguyen,Wei Qi Yan,Harvey Ho Conference proceedings 2021 Springer Nature Switzerland AG 2021

[復(fù)制鏈接]
樓主: 黑暗社會
41#
發(fā)表于 2025-3-28 15:43:11 | 只看該作者
Traffic-Sign Recognition Using Deep Learning,r the traffic-sign recognition in New Zealand. In order to determine which deep learning models are the most suitable one for the TSR, we choose two kinds of models to conduct deep learning computations: Faster R-CNN and YOLOv5. According to the scores of various metrics, we summarized the pros and cons of the picked models for the TSR task.
42#
發(fā)表于 2025-3-28 18:45:28 | 只看該作者
Segment- and Arc-Based Vectorizations by Multi-scale/Irregular Tangential Covering,construct the input noisy objects into cyclic contours made of lines or arcs with a minimal number of primitives. We explain our novel complete pipeline in this work, and present its experimental evaluation by considering both synthetic and real image data.
43#
發(fā)表于 2025-3-29 01:39:26 | 只看該作者
44#
發(fā)表于 2025-3-29 06:40:49 | 只看該作者
45#
發(fā)表于 2025-3-29 07:41:40 | 只看該作者
46#
發(fā)表于 2025-3-29 13:29:50 | 只看該作者
47#
發(fā)表于 2025-3-29 17:24:11 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:17 | 只看該作者
Apple Ripeness Identification Using Deep Learning,ifiers are able to achieve the best result, i.e., the ripeness class of an apple from a given digital image is able to be precisely predicted. We have optimized the deep learning models and trained the classifiers so as to achieve the best outcome.
49#
發(fā)表于 2025-3-30 00:18:45 | 只看該作者
50#
發(fā)表于 2025-3-30 04:13:44 | 只看該作者
Towards a Generic Bicubic Hermite Mesh Template for Cow Udders,ed correspondences occur due to data point occlusion and insufficient sampling points. In summary, a first parametric mesh based 3D model has been constructed for the cow udder and teat. We have examined the efficacy of the morphing algorithm, and also the issues to be solved for a statistical cow udder and teat model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 中山市| 沅陵县| 新津县| 含山县| 桂东县| 东平县| 夏河县| 四子王旗| 将乐县| 永新县| 曲阜市| 宿州市| 博客| 屏山县| 泗阳县| 正蓝旗| 措美县| 宜城市| 荥经县| 黔东| 古田县| 吴旗县| 郓城县| 建昌县| 长沙市| 读书| 武夷山市| 武乡县| 鲁山县| 弥渡县| 大同市| 铜鼓县| 宜良县| 通榆县| 大英县| 石景山区| 崇仁县| 湘潭县| 师宗县| 甘谷县|