找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Marco Pettini Book 2007 Springer-Verlag New York 2007 Dynamics.Ge

[復(fù)制鏈接]
樓主: 退縮
11#
發(fā)表于 2025-3-23 13:41:35 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:03 | 只看該作者
https://doi.org/10.1007/978-0-387-49957-4Dynamics; Geometry; Hamiltonian; Pettini; dynamical systems; topology
13#
發(fā)表于 2025-3-23 22:05:52 | 只看該作者
Steuerungs- und Prozessrechentechnik,hase transitions. The mathematical concepts and methods used are borrowed from Riemannian geometry and from elementary differential topology, respectively. The new approach proposed also unveils deep connections between the two mentioned topics.
14#
發(fā)表于 2025-3-23 22:32:03 | 只看該作者
https://doi.org/10.1007/978-3-8351-9045-0between them..The general problem of statistical physics is the following. Given a collection–in general a large collection–of atoms or molecules, given the interaction laws among the constituents of this collection of particles, and given the dynamical evolution laws, how can we predict the macrosc
15#
發(fā)表于 2025-3-24 03:19:15 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:23 | 只看該作者
Modellbildung technischer Systeme, methods and results. For example, as we have discussed in Chapter 2, the weaker requirement of only approximate integrability over finite times, or the existence of integrable regions in the phase space of a globally nonintegrable system, has led to the development of classical perturbation theory,
17#
發(fā)表于 2025-3-24 13:49:03 | 只看該作者
Modellbildung technischer Systeme, main tool, to reach a twofold objective: first, to obtain a deeper understanding of the origin of chaos in Hamiltonian systems, and second, to obtain quantitative information on the “strength” of chaos in these systems.
18#
發(fā)表于 2025-3-24 16:37:31 | 只看該作者
Modellbildung technischer Systeme,eometric theory of chaotic Hamiltonian dynamics. Such a theory is able to describe the instability of the dynamics in classical systems consisting of a large number . of mutually interacting particles, by relating these properties to the average and the fluctuations of the curvature of the configura
19#
發(fā)表于 2025-3-24 23:02:29 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大悟县| 曲阳县| 云梦县| 宁津县| 土默特左旗| 信丰县| 安丘市| 临江市| 宜昌市| 淳安县| 米易县| 天长市| 青川县| 夏河县| 高邮市| 德州市| 内乡县| 电白县| 井研县| 泽普县| 涿州市| 全椒县| 商丘市| 抚州市| 聂荣县| 曲松县| 临西县| 麦盖提县| 卫辉市| 峨眉山市| 元朗区| 侯马市| 大宁县| 鹿泉市| 班玛县| 留坝县| 酒泉市| 兰州市| 苗栗市| 阿尔山市| 怀集县|