找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Theoretical Physics; Joachim Debrus,Allen C. Hirshfeld Textbook 1991 Springer-Verlag Berlin Heidelberg 1991 Feldtheorie.Geome

[復制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 03:27:17 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:22:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:02 | 只看該作者
,Infinite Dimensional Algebras and (2+1)-Dimensional Field Theories: Yet Another View of gl(∞); Someang-Baxter algebras [1] constitute the relevant structure underlying (1+1)-dimensional integrable models; in addition, their relation to braid groups, the theory of knots and links, and the exchange algebras of (1+1)-dimensional conformal field theories [2] is by now well understood. Secondly, defor
25#
發(fā)表于 2025-3-25 20:01:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:28:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:22:38 | 只看該作者
All Solutions of the Wess-Zumino Consistency Conditions,ibe the main algebraic tools and theorems required for this complete classification. Our results answer the question whether in nonrenormalizable gauge theories there exist additional up-to-now unknown anomalies in the negative.
28#
發(fā)表于 2025-3-26 09:10:07 | 只看該作者
Modular Invariance, Causality and the ,-Theorem,- Vilkovisky method is used to construct the corresponding field theory, and its dimensional reduction by the Parisi-Sourlas mechanism is proven. We show that a certain element in the identity component of the .(., 2) subgroup of .(., 2∣2) induces the .-transformation in the physical subspace. We cl
29#
發(fā)表于 2025-3-26 13:19:08 | 只看該作者
Knots and Their Links with Biology and Physics, such discoveries was triggered in 1984 and is still rolling. It all started with a bridge between knot theory and the theory of von Neumann algebras: the Jones polynomials. Within one year biologists recognized the usefulness of these polynomials for the classification of the enzymes transforming o
30#
發(fā)表于 2025-3-26 18:39:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
克什克腾旗| 岳西县| 长沙市| 永福县| 江孜县| 休宁县| 昭苏县| 江山市| 安泽县| 扎鲁特旗| 阳城县| 彰化县| 南溪县| 方正县| 赞皇县| 微博| 嘉鱼县| 武清区| 汕尾市| 保亭| 长乐市| 咸宁市| 鹤庆县| 西城区| 旌德县| 澎湖县| 尚志市| 翁源县| 新宾| 农安县| 玉林市| 额敏县| 和田市| 长治县| 龙海市| 海林市| 吉林市| 广灵县| 乌海市| 德兴市| 万年县|