找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Quantum Physics; Proceedings of the 3 H. Gausterer,L. Pittner,Harald Grosse Conference proceedings 2000 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 14:47:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:20:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:52:19 | 只看該作者
Anyonic Solutions to the Thirring Model,re are fermionic solutions only if the coupling constant is ., otherwise solutions are anyons. Different anyons (which are uncountably many) live in orthogonal spaces, so the whole Hilbert space becomes non-separable and in each of its sectors a different Heisenberg’s “Ungleichung” holds. This featu
44#
發(fā)表于 2025-3-29 03:32:31 | 只看該作者
Twisting of Quantum Differentials,ves rise to a new Hopf algebra . . (the twist of .) with the same unit, counit and coproduct, but modified product. We show that a bicovariant bimodule . over . can be made a bicovariant bimodule over . . by equipping it with the same coactions but modified actions. The new (twisted) left action is
45#
發(fā)表于 2025-3-29 08:56:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:08:28 | 只看該作者
47#
發(fā)表于 2025-3-29 19:30:03 | 只看該作者
https://doi.org/10.1007/978-3-322-99590-2es labeled by intertwining operators. In a ‘spin foam model’ we describe states as linear combina- tions of spin networks and compute transition amplitudes as sums over spin foams. This paper aims to provide a self-contained introduction to spin foam models of quantum gravity and a simpler field theory called . theory.
48#
發(fā)表于 2025-3-29 21:52:24 | 只看該作者
49#
發(fā)表于 2025-3-30 02:00:17 | 只看該作者
50#
發(fā)表于 2025-3-30 07:14:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 思南县| 泗阳县| 山东省| 栖霞市| 田东县| 石家庄市| 平潭县| 通化市| 河津市| 正镶白旗| 顺平县| 五家渠市| 永城市| 庆元县| 迁安市| 涪陵区| 恩平市| 洪泽县| 深水埗区| 和硕县| 花垣县| 巴林右旗| 岫岩| 清流县| 陆河县| 吐鲁番市| 奉贤区| 绵阳市| 金华市| 六盘水市| 长宁县| 丰县| 伊川县| 德令哈市| 青田县| 建瓯市| 平乐县| 通州区| 河源市| 元谋县|