找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Physics; Jürgen Jost Textbook 2009 Springer-Verlag Berlin Heidelberg 2009 Area.Quantum Field Theory.Riemannian geometry.Sigma

[復制鏈接]
查看: 17895|回復: 35
樓主
發(fā)表于 2025-3-21 16:36:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry and Physics
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/384/383772/383772.mp4
概述Very good introductory text on the interplay between geometry and physics.Includes supplementary material:
圖書封面Titlebook: Geometry and Physics;  Jürgen Jost Textbook 2009 Springer-Verlag Berlin Heidelberg 2009 Area.Quantum Field Theory.Riemannian geometry.Sigma
描述."Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective..
出版日期Textbook 2009
關鍵詞Area; Quantum Field Theory; Riemannian geometry; Sigma model; Supersymmetry; manifold
版次1
doihttps://doi.org/10.1007/978-3-642-00541-1
isbn_softcover978-3-642-42070-2
isbn_ebook978-3-642-00541-1
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Geometry and Physics影響因子(影響力)




書目名稱Geometry and Physics影響因子(影響力)學科排名




書目名稱Geometry and Physics網絡公開度




書目名稱Geometry and Physics網絡公開度學科排名




書目名稱Geometry and Physics被引頻次




書目名稱Geometry and Physics被引頻次學科排名




書目名稱Geometry and Physics年度引用




書目名稱Geometry and Physics年度引用學科排名




書目名稱Geometry and Physics讀者反饋




書目名稱Geometry and Physics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:37:06 | 只看該作者
Statisch unbestimmte Tragwerke,al geometry as expressed through the tensor calculus is about coordinate representations of geometric objects and the transformations of those representations under coordinate changes. The geometric objects are invariantly defined, but their coordinate representations are not, and resolving this contradiction is the content of the tensor calculus.
板凳
發(fā)表于 2025-3-22 01:30:50 | 只看該作者
Textbook 2009ion to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also de
地板
發(fā)表于 2025-3-22 04:57:45 | 只看該作者
ts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective..978-3-642-42070-2978-3-642-00541-1
5#
發(fā)表于 2025-3-22 09:17:34 | 只看該作者
6#
發(fā)表于 2025-3-22 12:55:23 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:33:48 | 只看該作者
978-3-642-42070-2Springer-Verlag Berlin Heidelberg 2009
9#
發(fā)表于 2025-3-23 03:19:13 | 只看該作者
Statisch unbestimmte Tragwerke,he proofs of various results, we refer to J.?Jost (Riemannian Geometry and Geometric Analysis, 5th edn., Springer, Berlin, 2008). Classical differential geometry as expressed through the tensor calculus is about coordinate representations of geometric objects and the transformations of those represe
10#
發(fā)表于 2025-3-23 06:54:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 15:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
文水县| 淄博市| 云安县| 宜昌市| 灵台县| 星子县| 三台县| 纳雍县| 交口县| 河西区| 秀山| 定襄县| 赤城县| 阳原县| 喀喇| 永和县| 扶绥县| 鸡泽县| 清涧县| 高台县| 利津县| 宁晋县| 墨竹工卡县| 高阳县| 文昌市| 辽源市| 宜兰市| 当涂县| 武安市| 黄梅县| 迁西县| 成武县| 长兴县| 九龙坡区| 阿勒泰市| 新化县| 海伦市| 西平县| 昌黎县| 邢台市| 土默特右旗|