找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Dynamics of Integrable Systems; Alexey Bolsinov,Juan J. Morales-Ruiz,Nguyen Tien Z Textbook 2016 Springer International Publi

[復(fù)制鏈接]
查看: 49529|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:55:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometry and Dynamics of Integrable Systems
編輯Alexey Bolsinov,Juan J. Morales-Ruiz,Nguyen Tien Z
視頻videohttp://file.papertrans.cn/384/383768/383768.mp4
概述Provides a clear introduction to Differential Galois Theory and to Picard-Vessiot Theory.Establishes, as a first book, a connection between Singularities of bi-Hamiltonian systems, stability analysis,
叢書(shū)名稱Advanced Courses in Mathematics - CRM Barcelona
圖書(shū)封面Titlebook: Geometry and Dynamics of Integrable Systems;  Alexey Bolsinov,Juan J. Morales-Ruiz,Nguyen Tien Z Textbook 2016 Springer International Publi
描述.Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields.. .Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mirror symmetry). As such, the book will appeal to experts with a wide range of backgrounds..
出版日期Textbook 2016
關(guān)鍵詞bi-Hamiltonian systems; Poisson pencils; non-Hamiltonian systems; singularities; Picard-Vessiot; Differen
版次1
doihttps://doi.org/10.1007/978-3-319-33503-2
isbn_softcover978-3-319-33502-5
isbn_ebook978-3-319-33503-2Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱Geometry and Dynamics of Integrable Systems影響因子(影響力)




書(shū)目名稱Geometry and Dynamics of Integrable Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometry and Dynamics of Integrable Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometry and Dynamics of Integrable Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometry and Dynamics of Integrable Systems被引頻次




書(shū)目名稱Geometry and Dynamics of Integrable Systems被引頻次學(xué)科排名




書(shū)目名稱Geometry and Dynamics of Integrable Systems年度引用




書(shū)目名稱Geometry and Dynamics of Integrable Systems年度引用學(xué)科排名




書(shū)目名稱Geometry and Dynamics of Integrable Systems讀者反饋




書(shū)目名稱Geometry and Dynamics of Integrable Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:44:45 | 只看該作者
Textbook 2016ee major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All th
板凳
發(fā)表于 2025-3-22 01:34:04 | 只看該作者
2297-0304 Singularities of bi-Hamiltonian systems, stability analysis,.Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Ga
地板
發(fā)表于 2025-3-22 05:44:05 | 只看該作者
https://doi.org/10.1007/978-3-642-92904-5e sixties of the twentieth century by Kolchin, through the introduction of the modern algebraic abstract terminology and the obtention of new important results, see [12] and references therein. Today, the standard reference of this theory is the monograph [29].
5#
發(fā)表于 2025-3-22 12:11:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:31:47 | 只看該作者
978-3-319-33502-5Springer International Publishing Switzerland 2016
9#
發(fā)表于 2025-3-23 05:03:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:29 | 只看該作者
https://doi.org/10.1007/978-3-642-92904-5 a Galois theory for linear differential equations. This field of study, henceforth called Picard–Vessiot theory, was continued from the forties to the sixties of the twentieth century by Kolchin, through the introduction of the modern algebraic abstract terminology and the obtention of new importan
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖北省| 满洲里市| 本溪市| 和顺县| 霍林郭勒市| 商丘市| 泰来县| 安国市| 湟中县| 山东| 铁岭县| 鄂托克前旗| 巴南区| 那曲县| 潼南县| 嫩江县| 涿鹿县| 石嘴山市| 云林县| 丰都县| 碌曲县| 全南县| 承德市| 万全县| 虹口区| 曲靖市| 磐石市| 绥阳县| 广平县| 菏泽市| 瑞丽市| 元阳县| 弥渡县| 丘北县| 田阳县| 民勤县| 香港| 高雄市| 进贤县| 东莞市| 安宁市|