找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkh?user Ba

[復(fù)制鏈接]
查看: 50987|回復(fù): 64
樓主
發(fā)表于 2025-3-21 17:50:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces
副標(biāo)題In Memory of Alexand
編輯Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya
視頻videohttp://file.papertrans.cn/384/383767/383767.mp4
概述Contributions by many prominent mathematicians.Provides an extensive survey on Kleinian groups in higher dimensions.Contains an unpublished book "Analytic Topology of Groups, Actions, Strings and Vari
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkh?user Ba
出版日期Book 2008
關(guān)鍵詞Chern character; Congruence; Dirac operator; Fundamental group; Kleinian group; Lattice; Minimal surface; g
版次1
doihttps://doi.org/10.1007/978-3-7643-8608-5
isbn_ebook978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2008
The information of publication is updating

書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces影響因子(影響力)




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces被引頻次




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces年度引用




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces讀者反饋




書(shū)目名稱(chēng)Geometry and Dynamics of Groups and Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:58 | 只看該作者
Geometry and Dynamics of Groups and Spaces978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
板凳
發(fā)表于 2025-3-22 00:39:05 | 只看該作者
0743-1643 Overview: Contributions by many prominent mathematicians.Provides an extensive survey on Kleinian groups in higher dimensions.Contains an unpublished book "Analytic Topology of Groups, Actions, Strings and Vari978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
地板
發(fā)表于 2025-3-22 04:40:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:01:00 | 只看該作者
,Me?instrumente für Strom und Spannung,operator acting on the total space . of the tangent bundle .. This construction is parallel to the deformation of the de Rham Hodge operator we had obtained in a previous work. If . is complex and K?hler, we produce this way a deformation of the Hodge theory of the corresponding Dolbeault complex..B
6#
發(fā)表于 2025-3-22 12:58:58 | 只看該作者
Einführung in die Elektrizit?tslehree then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that they provide an approach to symmetry and moduli objects in non-commutative geometries based upon these “ring-like” structures. We give a unified axiomatic treatment of generalized
7#
發(fā)表于 2025-3-22 20:16:04 | 只看該作者
,Mechanismus der Leitungsstr?me,amples and counterexamples produced via the (.)-techniques in every of the following categories: (i) probability preserving actions, (ii) infinite measure preserving actions, (iii) non-singular actions (Krieger’s type .).
8#
發(fā)表于 2025-3-23 00:37:11 | 只看該作者
,Mechanismus der Leitungsstr?me,Fel’shtyn and Hill [.] conjectured that if . is injective, then .(.) is infinite. In this paper, we show that the conjecture holds for the Baumslag-Solitar groups .(.), where either |.| or |.| is greater than 1 and |.| ≠ |.|. We also show that in the cases where |.| = |.| ? 1 or . = ?1 the conjectur
9#
發(fā)表于 2025-3-23 02:02:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:11:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象州县| 思南县| 津南区| 昭平县| 泰安市| 龙井市| 东宁县| 竹溪县| 敖汉旗| 江城| 涟源市| 九台市| 海丰县| 桃园县| 隆回县| 宜川县| 定兴县| 阿拉善左旗| 中江县| 永寿县| 东乡| 靖州| 兰坪| 皋兰县| 岢岚县| 图们市| 杨浦区| 余姚市| 临沭县| 灌阳县| 贵溪市| 肇州县| 泰宁县| 老河口市| 金堂县| 阳山县| 丹东市| 乌兰浩特市| 襄樊市| 木兰县| 正镶白旗|