找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis on Manifolds; In Memory of Profess Takushiro Ochiai,Toshiki Mabuchi,Alan Weinstein Book 2015 Springer International P

[復(fù)制鏈接]
樓主: 方言
41#
發(fā)表于 2025-3-28 15:21:15 | 只看該作者
https://doi.org/10.1007/978-3-662-01400-4We present a moving frames proof, with motivation and context, that all nonumbilic Dupin immersions of a surface are Lie sphere congruent to each other.
42#
發(fā)表于 2025-3-28 22:42:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:34:15 | 只看該作者
A Lemma on Hartogs Function and Application to Levi Flat Hypersurfaces in Hopf SurfacesThe Levi form of the Hartogs function is computed for the domains with Levi flat boundary. The result is applied to the classification of Levi flat hypersurfaces in Hopf surfaces.
45#
發(fā)表于 2025-3-29 07:16:46 | 只看該作者
46#
發(fā)表于 2025-3-29 15:26:19 | 只看該作者
Geometry and Arithmetic on the Siegel–Jacobi SpaceThe Siegel–Jacobi space is a non–symmetric homogeneous space which is very important geometrically and arithmetically. In this paper, we discuss the theory of the geometry and the arithmetic of the Siegel–Jacobi space.
47#
發(fā)表于 2025-3-29 17:51:13 | 只看該作者
48#
發(fā)表于 2025-3-29 23:26:26 | 只看該作者
Dupin Hypersurfaces in Lie Sphere GeometryWe present a moving frames proof, with motivation and context, that all nonumbilic Dupin immersions of a surface are Lie sphere congruent to each other.
49#
發(fā)表于 2025-3-30 00:13:00 | 只看該作者
Takushiro Ochiai,Toshiki Mabuchi,Alan WeinsteinPresents lectures on recent topics in complex geometry and complex analysis for young researchers.Broadens your insight on merging geometry and analysis on manifolds.Provides a comprehensive list of S
50#
發(fā)表于 2025-3-30 06:59:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉贤区| 苍南县| 黔东| 抚顺县| 皋兰县| 微山县| 贵州省| 庐江县| 平乡县| 吉隆县| 怀化市| 崇礼县| 都江堰市| 沾益县| 类乌齐县| 安宁市| 龙海市| 西安市| 安国市| 永春县| 洪雅县| 高邮市| 仁怀市| 确山县| 清徐县| 崇州市| 寿阳县| 沙湾县| 靖宇县| 泸溪县| 鄂托克旗| 靖边县| 新干县| 金秀| 盐城市| 益阳市| 盘锦市| 封丘县| 中西区| 五台县| 应用必备|