找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions; Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 愚蠢地活
11#
發(fā)表于 2025-3-23 13:39:30 | 只看該作者
Partitions, Weight Functions and Their Hyperbolicity,In this section, we review basic notions and notations on a tree with a reference point.
12#
發(fā)表于 2025-3-23 13:56:00 | 只看該作者
Relations of Weight Functions,In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.
13#
發(fā)表于 2025-3-23 20:58:56 | 只看該作者
Characterization of Ahlfors Regular Conformal Dimension,In this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.
14#
發(fā)表于 2025-3-23 23:58:28 | 只看該作者
15#
發(fā)表于 2025-3-24 02:53:51 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:22:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:56:58 | 只看該作者
Book 2020 iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the
19#
發(fā)表于 2025-3-24 22:03:33 | 只看該作者
Introduction and a Showcase,nit interval [0, 1] shown in Fig. 1.1. Let ..?=?[0, 1] and divide .. in half as . and .. Next, .. and .. are divided in half again and yield .. for each (., .)?∈{0, 1}.. Repeating this procedure, we obtain . satisfying . for any .?≥?0 and ..…..?∈{0, 1}.. In this example, there are two notable proper
20#
發(fā)表于 2025-3-25 00:03:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 洛南县| 科技| 文昌市| 安阳市| 牙克石市| 库车县| 白朗县| 新泰市| 富蕴县| 屏南县| 库伦旗| 韶山市| 迁西县| 南宁市| 平陆县| 禹城市| 清原| 丹东市| 益阳市| 手机| 辛集市| 宁晋县| 庆安县| 揭阳市| 凤冈县| 东光县| 德兴市| 虞城县| 波密县| 台中县| 扎鲁特旗| 云浮市| 屯昌县| 墨竹工卡县| 福安市| 江陵县| 隆回县| 东方市| 辉县市| 新乡市|