找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Fractals; Hong Kong, December De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 24095|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:14:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry and Analysis of Fractals
副標(biāo)題Hong Kong, December
編輯De-Jun Feng,Ka-Sing Lau
視頻videohttp://file.papertrans.cn/384/383761/383761.mp4
概述Promote discussion on the very activity field of fractal geometry and its aspects in analysis, dynamical systems and stochastics.Written by international leading experts on their current research in a
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Geometry and Analysis of Fractals; Hong Kong, December  De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe
描述.This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics..
出版日期Conference proceedings 2014
關(guān)鍵詞Dirichlet form; Ergodic average; Fractal curvature; Heat kernel; Metric measure space,; Multifractal, pe
版次1
doihttps://doi.org/10.1007/978-3-662-43920-3
isbn_softcover978-3-662-51376-7
isbn_ebook978-3-662-43920-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Geometry and Analysis of Fractals影響因子(影響力)




書目名稱Geometry and Analysis of Fractals影響因子(影響力)學(xué)科排名




書目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開度




書目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry and Analysis of Fractals被引頻次




書目名稱Geometry and Analysis of Fractals被引頻次學(xué)科排名




書目名稱Geometry and Analysis of Fractals年度引用




書目名稱Geometry and Analysis of Fractals年度引用學(xué)科排名




書目名稱Geometry and Analysis of Fractals讀者反饋




書目名稱Geometry and Analysis of Fractals讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:59 | 只看該作者
The Geometry of Fractal Percolation, in three directions:.. the statements work for all directions, not almost all,.. the statements are true for more general projections, for example radial projections onto a circle,.. in the case ., each projection has not only positive Lebesgue measure but also has nonempty interior.
板凳
發(fā)表于 2025-3-22 04:09:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:05:40 | 只看該作者
Conference proceedings 2014c Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese Universit
5#
發(fā)表于 2025-3-22 09:53:25 | 只看該作者
6#
發(fā)表于 2025-3-22 15:47:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:10 | 只看該作者
Die Herkunft der Pyramidenbausteineoduction to additive combinatorics, focusing on inverse theorems, which play a pivotal role in the proof. Our elementary approach avoids many of the technicalities in [.], but also falls short of a complete proof; in the last section we discuss how the heuristic argument is turned into a rigorous one.
10#
發(fā)表于 2025-3-23 07:31:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 洛浦县| 峨山| 清河县| 南皮县| 德江县| 黑山县| 穆棱市| 鄂州市| 鄢陵县| 天门市| 社旗县| 勃利县| 岳阳市| 中西区| 雅安市| 舒城县| 秦皇岛市| 霍州市| 灵宝市| 兴安县| 龙南县| 留坝县| 凤冈县| 封开县| 隆化县| 大田县| 句容市| 屏南县| 湘潭县| 青海省| 奎屯市| 新竹市| 祁阳县| 宁陕县| 共和县| 柳河县| 抚宁县| 楚雄市| 田阳县| 新乡县|