找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry Revealed; A Jacob‘s Ladder to Marcel Berger Book 2010 Springer-Verlag Berlin Heidelberg 2010 Lattice.contemporary geometry.differ

[復(fù)制鏈接]
樓主: 軍械
21#
發(fā)表于 2025-3-25 05:54:46 | 只看該作者
22#
發(fā)表于 2025-3-25 09:08:18 | 只看該作者
Geometry and dynamics I: billiards,nge their velocities. The well known and spectacular case is where one is fixed; then the other remains fixed at the point of contact while the first leaves with the same velocity as the particle that hit it. If they encounter each other while going the same direction the result is still the same: t
23#
發(fā)表于 2025-3-25 15:11:14 | 只看該作者
Points and lines in the plane,, this has to do with Euclidean geometry, where there are distances (lengths), angles, circles, etc. This will also be the setting of the next chapter, but even in this first chapter we will see that we can already do many subtle and difficult things ? and even find open questions ? with only the so
24#
發(fā)表于 2025-3-25 17:51:25 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:31 | 只看該作者
The sphere by itself: can we distribute points on it evenly?,alls. It’s much more subtle than we might think, given the nice roundness and all the symmetriesof the object. Its geometry is indeed not made easier – at least for certain questions – by its being round, ., and bounded , in contrast to the Euclidean plane. Sect. III.3 will be the most representativ
26#
發(fā)表于 2025-3-26 00:52:28 | 只看該作者
Conics and quadrics,ith them for a long time, but talk about the quadrics only very briefly. We hope, however, that the chapter will please many readers. More knowledgeable – but not necessarily omniscient – readers may skip all the beginning material and just look at Sects. IV.8 and IV.9. Here are our motivations: we
27#
發(fā)表于 2025-3-26 07:42:20 | 只看該作者
Smooth surfaces,he Euclidean three-dimensional space .. However, we will see soon enough the necessity of considering . see Sect. V.XYZ. We didn’t encounter this problem for curves, for the only abstract curves are the line and the circle, and we can always visualize them, with their internal geometry, as situated
28#
發(fā)表于 2025-3-26 11:19:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:20:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 昌乐县| 印江| 黔南| 偃师市| 博爱县| 高要市| 临海市| 盈江县| 襄汾县| 九龙县| 阳谷县| 县级市| 社旗县| 东乌珠穆沁旗| 盘锦市| 峨边| 巍山| 惠州市| 北京市| 崇文区| 双鸭山市| 和田市| 施甸县| 岑溪市| 合江县| 长岛县| 华池县| 筠连县| 阿拉善左旗| 正阳县| 富平县| 绥芬河市| 湘潭县| 临朐县| 乐平市| 甘肃省| 张家口市| 老河口市| 特克斯县| 阿城市|