找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry III; Theory of Surfaces Yu. D. Burago,V. A. Zalgaller Book 1992 Springer-Verlag Berlin Heidelberg 1992 Differential Geometry.Diffe

[復(fù)制鏈接]
查看: 23215|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:48:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry III
副標題Theory of Surfaces
編輯Yu. D. Burago,V. A. Zalgaller
視頻videohttp://file.papertrans.cn/384/383749/383749.mp4
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Geometry III; Theory of Surfaces Yu. D. Burago,V. A. Zalgaller Book 1992 Springer-Verlag Berlin Heidelberg 1992 Differential Geometry.Diffe
描述The original version of this article was written more than fiveyears ago with S. Z. Shefel‘,a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel‘. Without knowing to what extent Shefel‘ would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refe
出版日期Book 1992
關(guān)鍵詞Differential Geometry; Differentialgeometrie; Fl?chen; Riemannian geometry; Surfaces; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-3-662-02751-6
isbn_softcover978-3-642-08102-6
isbn_ebook978-3-662-02751-6Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 1992
The information of publication is updating

書目名稱Geometry III影響因子(影響力)




書目名稱Geometry III影響因子(影響力)學(xué)科排名




書目名稱Geometry III網(wǎng)絡(luò)公開度




書目名稱Geometry III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry III被引頻次




書目名稱Geometry III被引頻次學(xué)科排名




書目名稱Geometry III年度引用




書目名稱Geometry III年度引用學(xué)科排名




書目名稱Geometry III讀者反饋




書目名稱Geometry III讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:07:18 | 只看該作者
Mathematische Grundlagen der Zuverl?ssigkeithy and Gauss. After it was discovered that on surfaces there is an “intrinsic geometry” that does not depend on the external form of the surface, there naturally arose the question of the possibility of deforming the surface, preserving its intrinsic geometry. Consideration of isometric immersions (
地板
發(fā)表于 2025-3-22 04:36:58 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:36:19 | 只看該作者
https://doi.org/10.1007/978-3-662-02751-6Differential Geometry; Differentialgeometrie; Fl?chen; Riemannian geometry; Surfaces; curvature; manifold
7#
發(fā)表于 2025-3-22 18:30:16 | 只看該作者
0938-0396 articular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refe978-3-642-08102-6978-3-662-02751-6Series ISSN 0938-0396
8#
發(fā)表于 2025-3-22 21:49:18 | 只看該作者
Book 1992ace E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refe
9#
發(fā)表于 2025-3-23 03:33:19 | 只看該作者
The Geometry of Surfaces in Euclidean Spaces,ince then the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design of which originated with Shefel’. Without knowing to what extent Shefel’ would have approved the changes, I
10#
發(fā)表于 2025-3-23 06:51:06 | 只看該作者
Surfaces of Negative Curvature, constitute part of the class of . in . .. Hence the article serves as an extension of the third chapter of Part I of this book, written by Yu.D. Burago and S.Z. Shefel’. At the same time, this article is meant to be read independently, and so together with the references to Alekseevskij, Vinogradov
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺平县| 肥乡县| 清新县| 泽州县| 九龙坡区| 浦县| 江陵县| 北宁市| 衡阳县| 青州市| 神农架林区| 韩城市| 攀枝花市| 长宁县| 百色市| 九江县| 岢岚县| 疏勒县| 青海省| 宜都市| 边坝县| 全椒县| 金昌市| 永修县| 永城市| 革吉县| 延津县| 酒泉市| 长海县| 苍溪县| 衡水市| 兴宁市| 文登市| 永年县| 南康市| 日土县| 阳朔县| 藁城市| 柳河县| 舞阳县| 小金县|