找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry -Intuition and Concepts; Imagining, understan Jost-Hinrich Eschenburg Book 2022 Springer Fachmedien Wiesbaden GmbH, part of Spring

[復(fù)制鏈接]
樓主: 恐怖
11#
發(fā)表于 2025-3-23 13:34:03 | 只看該作者
Distance: Euclidean Geometry,y are conic sections, which we will now also examine in terms of lengths and distances. Interestingly enough, this problem becomes more accessible to intuition if we take the term “conic section” literally and also consider the cone in space.
12#
發(fā)表于 2025-3-23 16:06:55 | 只看該作者
Curvature: Differential Geometry, following chapter, namely, those in which all coordinate surfaces intersect perpendicularly. The tangents of the intersecting lines are then principal curvature lines for both intersecting coordinate surfaces.
13#
發(fā)表于 2025-3-23 21:58:51 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:31 | 只看該作者
,Tips und Tricks für Programmierer,visual situations: The number of dimensions may be arbitrary, even larger than two or three, and the field of real numbers describing the one-dimensional continuum may be replaced by an arbitrary field.
15#
發(fā)表于 2025-3-24 05:20:32 | 只看該作者
,Fallstudie II — Soll-Ist Vergleich,eorems are discussed, the theorems of .. and . We will get to know conic sections and quadrics, and at the end an important numerical quantity which is invariant under projective transformations: the cross-ratio.
16#
發(fā)表于 2025-3-24 08:59:28 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:36 | 只看該作者
19#
發(fā)表于 2025-3-24 19:32:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:32:55 | 只看該作者
Das Laplace-Integral als Transformation,The exercises are a carefully selected supplement to the material. They offer the opportunity to pursue special situations or questions for which there is not enough space in the systematic presentation. They vary in difficulty, so hints are often given to facilitate access.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄯善县| 疏勒县| 广德县| 册亨县| 大丰市| 商都县| 新建县| 兴安盟| 北京市| 清水县| 济阳县| 故城县| 犍为县| 孟连| 五大连池市| 德格县| 龙州县| 巴塘县| 公安县| 蓬莱市| 乐昌市| 荔波县| 牡丹江市| 深水埗区| 夏河县| 明水县| 聂拉木县| 南平市| 北流市| 青海省| 哈密市| 抚宁县| 肥东县| 徐闻县| 永川市| 罗甸县| 遵义县| 潼关县| 墨玉县| 米脂县| 古浪县|