找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry -Intuition and Concepts; Imagining, understan Jost-Hinrich Eschenburg Book 2022 Springer Fachmedien Wiesbaden GmbH, part of Spring

[復(fù)制鏈接]
樓主: 恐怖
11#
發(fā)表于 2025-3-23 13:34:03 | 只看該作者
Distance: Euclidean Geometry,y are conic sections, which we will now also examine in terms of lengths and distances. Interestingly enough, this problem becomes more accessible to intuition if we take the term “conic section” literally and also consider the cone in space.
12#
發(fā)表于 2025-3-23 16:06:55 | 只看該作者
Curvature: Differential Geometry, following chapter, namely, those in which all coordinate surfaces intersect perpendicularly. The tangents of the intersecting lines are then principal curvature lines for both intersecting coordinate surfaces.
13#
發(fā)表于 2025-3-23 21:58:51 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:31 | 只看該作者
,Tips und Tricks für Programmierer,visual situations: The number of dimensions may be arbitrary, even larger than two or three, and the field of real numbers describing the one-dimensional continuum may be replaced by an arbitrary field.
15#
發(fā)表于 2025-3-24 05:20:32 | 只看該作者
,Fallstudie II — Soll-Ist Vergleich,eorems are discussed, the theorems of .. and . We will get to know conic sections and quadrics, and at the end an important numerical quantity which is invariant under projective transformations: the cross-ratio.
16#
發(fā)表于 2025-3-24 08:59:28 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:36 | 只看該作者
19#
發(fā)表于 2025-3-24 19:32:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:32:55 | 只看該作者
Das Laplace-Integral als Transformation,The exercises are a carefully selected supplement to the material. They offer the opportunity to pursue special situations or questions for which there is not enough space in the systematic presentation. They vary in difficulty, so hints are often given to facilitate access.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 辽阳县| 双鸭山市| 双峰县| 克拉玛依市| 博野县| 尖扎县| 安庆市| 科尔| 福海县| 辰溪县| 静安区| 抚宁县| 内江市| 娱乐| 浙江省| 天祝| 泗洪县| 县级市| 阳朔县| 高阳县| 辽阳县| 岳阳市| 临夏县| 杭锦旗| 汶上县| 肇庆市| 九寨沟县| 勃利县| 闽清县| 老河口市| 天水市| 甘泉县| 湟中县| 泾川县| 尼勒克县| 攀枝花市| 南汇区| 新宁县| 洮南市| 金溪县|