找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Our Cultural Heritag Audun Holme Textbook 20021st edition Springer-Verlag Berlin Heidelberg 2002 Algebra.Apollonius.Fractal.Geome

[復(fù)制鏈接]
樓主: digestive-tract
41#
發(fā)表于 2025-3-28 17:33:42 | 只看該作者
42#
發(fā)表于 2025-3-28 19:42:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:06:45 | 只看該作者
Geometry in the Hellenistic EraAlexandria was founded where the Nile meets the Mediterranean by Alexander the Great, in the year 331 B.C. The city became the capital of Egypt, and rapidly developed into one of the richest and most beautiful cities in the world. That is to say, in the world known to the antique.
44#
發(fā)表于 2025-3-29 06:21:05 | 只看該作者
45#
發(fā)表于 2025-3-29 08:46:08 | 只看該作者
Axiomatic Projective GeometryThe axiomatic treatment of . has at its starting point three .. We are given one . ?, which we call ., and another set ? which we call .. Further, there is given a . between elements from ? and elements from ? which is denoted by ., and referred to as .. If . holds for . ∈ ? and . ∈ ?, then we say that ..
46#
發(fā)表于 2025-3-29 15:12:23 | 只看該作者
Making Things PreciseIn Section 8.3 we saw how a model for the projective plane may be constructed by taking the northern hemisphere of a spherical surface, including the equator, and then . diametrically opposite points on the equator.
47#
發(fā)表于 2025-3-29 16:54:42 | 只看該作者
Geometry in the Affine and the Projective PlaneIn this chapter we shall, among other things, prove the classical theorems of .. These theorems are valid in the projective plane ?. (?), and we shall give simple algebraic proofs, which fully take advantage of the strength inherent in ..
48#
發(fā)表于 2025-3-29 20:35:46 | 只看該作者
49#
發(fā)表于 2025-3-30 01:48:40 | 只看該作者
Higher Geometry in the Projective PlaneWe define curves in the . ?. (?) analogously to curves in the affine plane ?.. The difference is that we can not use ordinary polynomials in two variables, but have to work with . instead. We have seen this in Section 12.8, for conics.
50#
發(fā)表于 2025-3-30 05:17:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山阳县| 隆回县| 河曲县| 遂平县| 临桂县| 信宜市| 正安县| 内乡县| 上虞市| 台江县| 菏泽市| 赤峰市| 牙克石市| 吐鲁番市| 高尔夫| 新丰县| 福清市| 南靖县| 开江县| 吴桥县| 六枝特区| 汶上县| 五峰| 星子县| 安国市| 台前县| 康乐县| 富锦市| 冕宁县| 酒泉市| 缙云县| 乐陵市| 光山县| 山东省| 临夏县| 通化市| 汕尾市| 钦州市| 雷山县| 宜宾市| 环江|