找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Michèle Audin Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 51XX.53XX.Area.Euclidean geometry.conics.differential geometr

[復制鏈接]
樓主: hector
11#
發(fā)表于 2025-3-23 12:20:18 | 只看該作者
Affine Geometry,An affine space is a set of points; it contains lines, etc. and affine geometry. deals, for instance, with the relations between these points and these lines (collinear points, parallel or concurrent lines…). To define these objects and describe their relations, one can:
12#
發(fā)表于 2025-3-23 15:10:21 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:18 | 只看該作者
Euclidean Geometry in Space,In this chapter, everything will take place in a Euclidean (affine or vector) space of dimension 3.
14#
發(fā)表于 2025-3-23 23:08:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:37 | 只看該作者
Conics and Quadrics,This chapter is devoted to quadrics and especially to conics. I have tried to keep a balance between:
16#
發(fā)表于 2025-3-24 10:02:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:40 | 只看該作者
Hans-Joachim Opitz,Hasso von Wedele is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
18#
發(fā)表于 2025-3-24 15:03:12 | 只看該作者
Euclidean Geometry in the Plane,e is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
19#
發(fā)表于 2025-3-24 21:29:01 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
顺昌县| 屏山县| 巩留县| 高雄县| 鄂伦春自治旗| 济南市| 都安| 尚义县| 泗阳县| 沙湾县| 黑龙江省| 合水县| 阿合奇县| 绵阳市| 长春市| 泸定县| 建昌县| 新津县| 肃宁县| 柳州市| 龙山县| 新晃| 虞城县| 大同县| 徐闻县| 读书| 嘉定区| 射洪县| 阳高县| 密山市| 永修县| 汝城县| 恭城| 广南县| 大宁县| 清流县| 济源市| 秦安县| 永登县| 尉犁县| 班玛县|