找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries and Groups; Viacheslav V. Nikulin,Igor R. Shafarevich Textbook 1994 Springer-Verlag Berlin Heidelberg 1994 Lattice.Mathematica.

[復(fù)制鏈接]
查看: 17602|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:09:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometries and Groups
編輯Viacheslav V. Nikulin,Igor R. Shafarevich
視頻videohttp://file.papertrans.cn/384/383703/383703.mp4
叢書名稱Universitext
圖書封面Titlebook: Geometries and Groups;  Viacheslav V. Nikulin,Igor R. Shafarevich Textbook 1994 Springer-Verlag Berlin Heidelberg 1994 Lattice.Mathematica.
描述This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the
出版日期Textbook 1994
關(guān)鍵詞Lattice; Mathematica; Non-Euclidean Geometry; Symmetry group; addition; algebra; boundary element method; f
版次1
doihttps://doi.org/10.1007/978-3-642-61570-2
isbn_softcover978-3-540-15281-1
isbn_ebook978-3-642-61570-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1994
The information of publication is updating

書目名稱Geometries and Groups影響因子(影響力)




書目名稱Geometries and Groups影響因子(影響力)學(xué)科排名




書目名稱Geometries and Groups網(wǎng)絡(luò)公開度




書目名稱Geometries and Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometries and Groups被引頻次




書目名稱Geometries and Groups被引頻次學(xué)科排名




書目名稱Geometries and Groups年度引用




書目名稱Geometries and Groups年度引用學(xué)科排名




書目名稱Geometries and Groups讀者反饋




書目名稱Geometries and Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:01:23 | 只看該作者
https://doi.org/10.1057/9780230339514t a general method of constructing locally Euclidean geometries in such a concrete way that in §8 we will be able to classify explicitly all the geometries so obtained. On the other hand, this method turns out to be general enough to include any locally Euclidean geometry whatsoever, as will be prov
地板
發(fā)表于 2025-3-22 06:19:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:19 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:18 | 只看該作者
El-Sisi on Horseback: El-Sisi and Beyond out to be applicable in other, sometimes quite dissimilar, areas. In other words, we can imagine different worlds, in which the laws of geometry are different from ours, almost as well as if we lived in them. The aim of this book is to tell of one line of geometrical investigation in which this phenomenon manifests itself particular vividly.
7#
發(fā)表于 2025-3-22 18:57:08 | 只看該作者
8#
發(fā)表于 2025-3-22 23:20:33 | 只看該作者
9#
發(fā)表于 2025-3-23 02:54:34 | 只看該作者
Geometries and Groups978-3-642-61570-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
10#
發(fā)表于 2025-3-23 07:10:54 | 只看該作者
Forming geometrical intuition; statement of the main problem, out to be applicable in other, sometimes quite dissimilar, areas. In other words, we can imagine different worlds, in which the laws of geometry are different from ours, almost as well as if we lived in them. The aim of this book is to tell of one line of geometrical investigation in which this phe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邢台市| 房山区| 蕲春县| 北票市| 平舆县| 中山市| 九江县| 河池市| 凌云县| 襄垣县| 珠海市| 内丘县| 齐齐哈尔市| 眉山市| 长宁县| 临猗县| 镇江市| 滦南县| 仙居县| 枞阳县| 苏尼特右旗| 华蓥市| 松滋市| 定远县| 教育| 合山市| 亚东县| 会昌县| 和顺县| 桃江县| 积石山| 岑溪市| 图木舒克市| 汶上县| 衢州市| 汤阴县| 合山市| 吉安县| 内丘县| 乐东| 藁城市|