找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrie der Raumzeit; Eine mathematische E Rainer Oloff Textbook 20043rd edition Springer Fachmedien Wiesbaden 2004 Astrophysik.Geod?ten.

[復(fù)制鏈接]
樓主: affront
31#
發(fā)表于 2025-3-26 22:41:11 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:55 | 只看該作者
Robert J. Meyers,Brenda L. WolfeJeder Tangentialraum . einer .-dimensionalen .-Mannigfaltigkeit . ist ein .-dimensionaler linearer Raum. Damit sind für nichtnegative ganze Zahlen . und . die Tensorr?ume . erkl?rt. Insbesondere lassen sich dieDualr?ume. bilden.
33#
發(fā)表于 2025-3-27 09:19:57 | 只看該作者
34#
發(fā)表于 2025-3-27 11:17:42 | 只看該作者
Theoretische achtergronden training,Gegenstand dieses Kapitels ist die Beschreibung der ?nderung eines Vektorfeldes . bei einer kleinen Verschiebung des Punktes .. Im Punkt . m?chten wir aus einem Vektorfeld und einem Vektor . ∈ . bei der Richtungsableitung wieder einen Vektor aus . erhalten.
35#
發(fā)表于 2025-3-27 17:07:43 | 只看該作者
Eetstoornissen en seksualiteit,Wir w?hlen hier einen abstrakten Zugang, bei dem zun?chst nichts von dem zu erkennen ist, was man sich bei einer Fl?che in ?. unter Krümmung vorstellt. Weil der Begriff der kovarianten Ableitung verwendet wird, ist eine semi-Riemannsche Mannigfaltigkeit [.,.] zugrunde zu legen.
36#
發(fā)表于 2025-3-27 20:21:23 | 只看該作者
F. Quiles,A. Burneau,K. KeidingWie schon im Abschnitt 2.3 erw?hnt, ist ein Vektorfeld als Str?mung zu deuten. Es liegt nun nahe zu untersuchen, wohin diese Str?mung ein Teilchen im Verlaufe einer bestimmten Zeitspanne transportiert (Bild 12.1).
37#
發(fā)表于 2025-3-27 23:28:06 | 只看該作者
Microbial Investigations: OverviewDer Begriff der Mannigfaltigkeit umfa?t gekrümmte Kurven und Fl?chen im dreidimensionalen euklidischen Raum. Ein Integralbegriff auf Mannigfaltigkeiten sollte deshalb Kurvenintegrale und Oberfl?chenintegrale verallgemeinern.
38#
發(fā)表于 2025-3-28 03:46:34 | 只看該作者
39#
發(fā)表于 2025-3-28 08:33:58 | 只看該作者
40#
發(fā)表于 2025-3-28 12:03:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中阳县| 沂水县| 濮阳县| 西平县| 绥棱县| 册亨县| 渝中区| 修水县| 灵寿县| 栖霞市| 清远市| 北票市| 大冶市| 关岭| 宜宾市| 大城县| 千阳县| 黄冈市| 寿阳县| 曲阜市| 双鸭山市| 朝阳区| 天全县| 彭阳县| 绍兴市| 德格县| 汝城县| 湄潭县| 达州市| 宕昌县| 唐山市| 新源县| 介休市| 基隆市| 合肥市| 洛宁县| 宁乡县| 万载县| 琼海市| 莱芜市| 衡水市|