找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Methods in Variational Problems; N. A. Bobylev,S. V. Emel’yanov,S. K. Korovin Book 1999 Springer Science+Business Media Dordre

[復(fù)制鏈接]
樓主: malignant
11#
發(fā)表于 2025-3-23 12:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:38 | 只看該作者
13#
發(fā)表于 2025-3-23 19:55:01 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8oblems, problems of the classical calculus of variations, higher-dimensional variational problems, and mathematical programming problems. Conceptually, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isol
14#
發(fā)表于 2025-3-24 02:16:07 | 只看該作者
Introduction to the E3-India Model,valent to it; these theories originate in the classical studies of Poincaré, Brouwer, Kronecker, Hopf, Leray, and Schauder. The apparatus of the degree theory of mapping is one of the basic tools of nonlinear analysis and its applications. Therefore, we present the auxiliary material of this chapter
15#
發(fā)表于 2025-3-24 05:24:34 | 只看該作者
Minimization of Nonlinear Functionals,lculus of variations, optimal control theory, mathematical physics, mechanics, .. In this chapter, we present general theorems of the minimum of nonlinear functionals, which form a basis of variational methods.
16#
發(fā)表于 2025-3-24 09:23:30 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:55 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isolated with respect to a parameter, then its property to be a point of minimum is a homotopy invariant. This chapter is devoted to the verification of this principle, which has many applications.
19#
發(fā)表于 2025-3-24 20:31:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:28:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂宁市| 香河县| 合江县| 淄博市| 小金县| SHOW| 遵化市| 刚察县| 永平县| 霍林郭勒市| 阜康市| 江都市| 修文县| 岳阳市| 嘉黎县| 阿巴嘎旗| 贵港市| 同仁县| 昌吉市| 霍林郭勒市| 敦化市| 册亨县| 若羌县| 任丘市| 乌兰察布市| 仪陇县| 扎鲁特旗| 全南县| 开江县| 子洲县| 介休市| 营口市| 巴林左旗| 长治市| 郎溪县| 南通市| 阜宁县| 精河县| 都匀市| 炎陵县| 布尔津县|