找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2015, Monastir, Ali Baklouti,Takaaki Nomura Conference proceed

[復(fù)制鏈接]
查看: 10147|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:12:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications
副標(biāo)題TJC 2015, Monastir,
編輯Ali Baklouti,Takaaki Nomura
視頻videohttp://file.papertrans.cn/384/383639/383639.mp4
概述Provides a unique overview on non-commutative harmonic analysis on homogeneous spaces with many applications.Collects interesting perspectives from several researchers working on manifold different ar
叢書(shū)名稱Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2015, Monastir,  Ali Baklouti,Takaaki Nomura Conference proceed
描述This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry..Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous?spaces form a significant and important area of mathematical research. These areas are interrelated with?various other mathematical fields such as number theory, algebraic geometry, differential geometry,?operator algebra, partial differential equations and mathematical physics.?.Keeping up with the fast?development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura?(Kyushu University) launched a series of seminars on the topic, the first of which took place on?November 2009 in Kerkennah Islands, the second in Sousse ?on December 2011, and the thi.rd in Hammamet?on December 2013.The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaborat
出版日期Conference proceedings 2017
關(guān)鍵詞Lie Groups; Harmonic analysis; Geometric analysis; Uncertainty principles; Representation theory; partial
版次1
doihttps://doi.org/10.1007/978-3-319-65181-1
isbn_softcover978-3-319-87967-3
isbn_ebook978-3-319-65181-1Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications影響因子(影響力)




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications被引頻次




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications被引頻次學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications年度引用




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications年度引用學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications讀者反饋




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:13 | 只看該作者
Conference proceedings 2017 ?on December 2011, and the thi.rd in Hammamet?on December 2013.The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaborat
板凳
發(fā)表于 2025-3-22 03:10:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:05:45 | 只看該作者
6#
發(fā)表于 2025-3-22 16:55:52 | 只看該作者
7#
發(fā)表于 2025-3-22 18:30:36 | 只看該作者
8#
發(fā)表于 2025-3-22 21:35:56 | 只看該作者
Economic Growth in Developing CountriesThe main purpose of this paper is first to summarize the basics on color Lie bialgebras and then construct a big bracket which is used to define explicitly a cohomology complex and study deformations of color Lie bialgebras. Moreover, we provide some classification results and examples of cohomology computations.
9#
發(fā)表于 2025-3-23 02:11:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:00:40 | 只看該作者
On ,-Gamma and ,-Bessel Functions,In this paper, we present some characterizations of the .-Gamma and the properties of the .-Bessel functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 府谷县| 沈丘县| 满洲里市| 巴南区| 股票| 凤庆县| 瑞昌市| 新安县| 五莲县| 青田县| 额敏县| 皮山县| 砀山县| 延长县| 太仆寺旗| 泸西县| 桐庐县| 贵港市| 望都县| 彭山县| 石家庄市| 安陆市| 汉中市| 西贡区| 龙井市| 连州市| 广南县| 射洪县| 福泉市| 宁强县| 华阴市| 镇原县| 军事| 久治县| 德钦县| 明水县| 赣州市| 通许县| 安多县| 龙里县|