找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2019, Djerba, Tu Ali Baklouti,Hideyuki Ishi Conference proceedi

[復(fù)制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 03:47:25 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:37 | 只看該作者
Protectionism and Empire Unity after 1875of the group .. The purpose of this paper is to show that if . is isomorphic to a closed subgroup lattice of a Lie group with finitely many connected components, then . itself is a Lie group with finitely many connected components. Moreover, we establish that . is finite if and only if . is finite.
23#
發(fā)表于 2025-3-25 11:59:00 | 只看該作者
24#
發(fā)表于 2025-3-25 17:24:42 | 只看該作者
Tai-Yoo Kim,Almas Heshmati,Jihyoun Park terms of its .-norm and the diameter of its support. We investigate in this paper the algebraic structure of compactly generated .-adic groups that have property (RD). We prove in particular that an algebraic group over . which is compactly generated as well as its radical has property (RD) if and only if it is reductive.
25#
發(fā)表于 2025-3-25 20:11:15 | 只看該作者
26#
發(fā)表于 2025-3-26 04:07:34 | 只看該作者
Muhammad Shahbaz,Alaa Soliman,Subhan Ullahductive absolutely spherical subgroups . and .. As an application, we describe generic double cosets with some exceptions. The exceptions for our approach come from some factorizations of type .-groups.
27#
發(fā)表于 2025-3-26 07:57:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:17 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:14 | 只看該作者
On the Subgroup Lattices of Lie Groups with Finitely Many Connected Components,of the group .. The purpose of this paper is to show that if . is isomorphic to a closed subgroup lattice of a Lie group with finitely many connected components, then . itself is a Lie group with finitely many connected components. Moreover, we establish that . is finite if and only if . is finite.
30#
發(fā)表于 2025-3-26 18:45:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 固安县| 栾川县| 麻城市| 东兴市| 衡南县| 安图县| 新干县| 仁怀市| 习水县| 济宁市| 和田市| 禄劝| 启东市| 介休市| 板桥市| 奉节县| 固始县| 鱼台县| 呼和浩特市| 克东县| 尚义县| 永泰县| 乃东县| 枣庄市| 衡水市| 汕尾市| 鲁山县| 清远市| 荥经县| 铁力市| 稻城县| 定边县| 宜昌市| 灵台县| 莲花县| 攀枝花市| 鹤岗市| 广丰县| 合作市| 乌审旗|