找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 04:16:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:54:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:22:28 | 只看該作者
Economic Evaluations in Exploration on them. For non-symmetric reductive pairs, there are examples of generalizations of Cartan decompositions for some spherical complex homogeneous spaces such as complex line bundles over the complexified Hermitian symmetric spaces and triple spaces. This paper provides new examples of a Cartan deco
24#
發(fā)表于 2025-3-25 18:05:09 | 只看該作者
Economic Evaluations in Explorationhat generalises Alan Weinstein’s famous normal form theorem in symplectic geometry), providing also complete proofs for the necessary results in foliated differential topology, i.e., a foliated tubular neighborhood theorem and a foliated relative Poincaré lemma.
25#
發(fā)表于 2025-3-25 22:21:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:33:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:32:04 | 只看該作者
29#
發(fā)表于 2025-3-26 12:53:23 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:22 | 只看該作者
The Poisson Characteristic Variety of Unitary Irreducible Representations of Exponential Lie GroupsWe recall the notion of Poisson characteristic variety of a unitary irreducible representation of an exponential solvable Lie group, and conjecture that it coincides with the Zariski closure of the associated coadjoint orbit. We prove this conjecture in some particular situations, including the nilpotent case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙雅县| 浦北县| 千阳县| 敦煌市| 家居| 商河县| 隆化县| 东乡| 蓝田县| 湘西| 霞浦县| 北川| 太和县| 安庆市| 道孚县| 永年县| 潢川县| 佛学| 蓝山县| 石嘴山市| 柘荣县| 邵东县| 九寨沟县| 辽阳县| 南雄市| 图木舒克市| 定安县| 泾川县| 宁明县| 波密县| 天津市| 容城县| 福州市| 无棣县| 公安县| 兴业县| 和林格尔县| 南皮县| 遂川县| 通州市| 冕宁县|