找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Analytic Number Theory; Edmund Hlawka,Rudolf Taschner,Johannes Schoi?engei Textbook 1991 Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
查看: 41824|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:42:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric and Analytic Number Theory
編輯Edmund Hlawka,Rudolf Taschner,Johannes Schoi?engei
視頻videohttp://file.papertrans.cn/384/383633/383633.mp4
叢書名稱Universitext
圖書封面Titlebook: Geometric and Analytic Number Theory;  Edmund Hlawka,Rudolf Taschner,Johannes Schoi?engei Textbook 1991 Springer-Verlag Berlin Heidelberg 1
描述In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our ‘Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap- proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al- ready studie
出版日期Textbook 1991
關(guān)鍵詞Diophantine approximation; Geometrie der Zahlen; Prime; Prime number; Primzahlverteilung; diophantische A
版次1
doihttps://doi.org/10.1007/978-3-642-75306-0
isbn_softcover978-3-540-52016-0
isbn_ebook978-3-642-75306-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1991
The information of publication is updating

書目名稱Geometric and Analytic Number Theory影響因子(影響力)




書目名稱Geometric and Analytic Number Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric and Analytic Number Theory網(wǎng)絡(luò)公開度




書目名稱Geometric and Analytic Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric and Analytic Number Theory被引頻次




書目名稱Geometric and Analytic Number Theory被引頻次學(xué)科排名




書目名稱Geometric and Analytic Number Theory年度引用




書目名稱Geometric and Analytic Number Theory年度引用學(xué)科排名




書目名稱Geometric and Analytic Number Theory讀者反饋




書目名稱Geometric and Analytic Number Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:29 | 只看該作者
https://doi.org/10.1007/978-3-642-79972-3rked out. Even simple questions about the way in which the number . + π is put together are unsolved up to now. Therefore the construction of real numbers from natural numbers is no simple problem. The theory of diophantine approximation seeks to understand how well, that is how closely, real numbers can be trapped by relations with the integers.
5#
發(fā)表于 2025-3-22 12:07:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:24 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:54 | 只看該作者
The Kronecker Approximation Theorem,?. From the . point of view it involves rolling up the real line onto a circle of circumference 1, where the cle replaces the unit interval [0,1[. . open sets on the circle are identified as open sets on [0,1[, i.e. neighbourhoods in [0,1[ are defined by the quotient topology in ?/?. Considered in this way Dirichlet’s theorem states
8#
發(fā)表于 2025-3-22 23:27:31 | 只看該作者
9#
發(fā)表于 2025-3-23 02:24:19 | 只看該作者
10#
發(fā)表于 2025-3-23 05:34:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 吕梁市| 麻栗坡县| 濉溪县| 九江县| 宁化县| 油尖旺区| 祁连县| 揭阳市| 光山县| 馆陶县| 桂平市| 朝阳区| 长沙县| 高陵县| 克山县| 繁昌县| 佛山市| 永清县| 东海县| 汝阳县| 乌什县| 黄骅市| 方山县| 霸州市| 花莲县| 临海市| 东至县| 齐河县| 新丰县| 通海县| 洛隆县| 甘谷县| 茌平县| 锡林浩特市| 江门市| 浙江省| 讷河市| 离岛区| 彰化县| 仁布县|