找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory of Foliations; César Camacho,Alcides Lins Neto Book 1985 Springer Science+Business Media New York 1985 Lie.Manifold.Topol

[復(fù)制鏈接]
樓主: 時(shí)間
11#
發(fā)表于 2025-3-23 13:46:31 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:39 | 只看該作者
Crina Oltean-Dumbrava,Margherita Finamorehisms of a transverse section to a leaf, with a fixed point. In certain circumstances, however, it is possible to associate to the foliation a group of diffeomorphisms of a global transverse section, containing in a certain well-defined sense the holonomy of each leaf. This is the case of foliations
13#
發(fā)表于 2025-3-23 20:38:05 | 只看該作者
https://doi.org/10.1007/978-1-4612-5292-4Lie; Manifold; Topology; equation; foliation; geometry; theorem
14#
發(fā)表于 2025-3-23 22:27:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:34:59 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:54 | 只看該作者
On Consumerism and the ‘Logic of Capital’In this chapter, we state the basics of the theory of differentiable manifolds and maps with the intention of establishing the principal theorems and notation which will be used in the book.
17#
發(fā)表于 2025-3-24 13:30:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:52 | 只看該作者
https://doi.org/10.1007/978-981-99-3818-6We saw in the previous chapter that the leaves of a .. foliation inherit a .. differentiate manifold structure immersed in the ambient manifold. In this chapter we will study the topological properties of these immersions, giving special emphasis to the asymptotic properties of the leaves.
19#
發(fā)表于 2025-3-24 21:44:47 | 只看該作者
Finn Bro-Rasmussen,Kirsten Warn?eA codimension . foliation . of an .-dimensional manifold is analytic when the change of coordinate maps which define . are analytic local diffeomorphisms of ... Under these conditions any element of the holonomy of a leaf of . has a representation which is an analytic local diffeomorphism of ...
20#
發(fā)表于 2025-3-25 01:52:55 | 只看該作者
Nirbhay N. Singh,Michael G. AmanThe following theorem, due to Novikov [40], is one of the deepest, most beautiful theorems in foliations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永新县| 商水县| 兰西县| 凌源市| 萨嘎县| 兰考县| 巴里| 宣汉县| 于田县| 耒阳市| 左云县| 西昌市| 洪泽县| 昌都县| 榆社县| 商城县| 景泰县| 阿拉善左旗| 北川| 鄂伦春自治旗| 德清县| 疏勒县| 南京市| 汨罗市| 武功县| 台北市| 迁西县| 阿拉善右旗| 衡山县| 湘阴县| 平阴县| 剑河县| 遵义市| 新竹市| 阿克陶县| 浮梁县| 册亨县| 平利县| 江阴市| 灯塔市| 偏关县|