找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory of Foliations; César Camacho,Alcides Lins Neto Book 1985 Springer Science+Business Media New York 1985 Lie.Manifold.Topol

[復制鏈接]
樓主: 時間
11#
發(fā)表于 2025-3-23 13:46:31 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:39 | 只看該作者
Crina Oltean-Dumbrava,Margherita Finamorehisms of a transverse section to a leaf, with a fixed point. In certain circumstances, however, it is possible to associate to the foliation a group of diffeomorphisms of a global transverse section, containing in a certain well-defined sense the holonomy of each leaf. This is the case of foliations
13#
發(fā)表于 2025-3-23 20:38:05 | 只看該作者
https://doi.org/10.1007/978-1-4612-5292-4Lie; Manifold; Topology; equation; foliation; geometry; theorem
14#
發(fā)表于 2025-3-23 22:27:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:34:59 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:54 | 只看該作者
On Consumerism and the ‘Logic of Capital’In this chapter, we state the basics of the theory of differentiable manifolds and maps with the intention of establishing the principal theorems and notation which will be used in the book.
17#
發(fā)表于 2025-3-24 13:30:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:52 | 只看該作者
https://doi.org/10.1007/978-981-99-3818-6We saw in the previous chapter that the leaves of a .. foliation inherit a .. differentiate manifold structure immersed in the ambient manifold. In this chapter we will study the topological properties of these immersions, giving special emphasis to the asymptotic properties of the leaves.
19#
發(fā)表于 2025-3-24 21:44:47 | 只看該作者
Finn Bro-Rasmussen,Kirsten Warn?eA codimension . foliation . of an .-dimensional manifold is analytic when the change of coordinate maps which define . are analytic local diffeomorphisms of ... Under these conditions any element of the holonomy of a leaf of . has a representation which is an analytic local diffeomorphism of ...
20#
發(fā)表于 2025-3-25 01:52:55 | 只看該作者
Nirbhay N. Singh,Michael G. AmanThe following theorem, due to Novikov [40], is one of the deepest, most beautiful theorems in foliations.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 02:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泸水县| 贵南县| 若羌县| 青河县| 青龙| 辛集市| 阳江市| 神木县| 嘉义县| 龙陵县| 宣城市| 富顺县| 怀集县| 金山区| 海城市| 长治市| 乐亭县| 丰都县| 咸丰县| 阿图什市| 芷江| 瑞金市| 阿拉善盟| 石楼县| 康定县| 河池市| 双鸭山市| 囊谦县| 嘉祥县| 全州县| 花莲县| 常熟市| 彝良县| 光山县| 黄骅市| 天全县| 柏乡县| 莱州市| 九寨沟县| 屏南县| 峡江县|