找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Sums: Bounds for Rare Events with Applications; Risk Analysis, Relia Vladimir Kalashnikov Book 1997 Springer Science+Business Med

[復(fù)制鏈接]
查看: 7808|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:48:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Sums: Bounds for Rare Events with Applications
副標(biāo)題Risk Analysis, Relia
編輯Vladimir Kalashnikov
視頻videohttp://file.papertrans.cn/384/383615/383615.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometric Sums: Bounds for Rare Events with Applications; Risk Analysis, Relia Vladimir Kalashnikov Book 1997 Springer Science+Business Med
描述This book reviews problems associated with rare events arisingin a wide range of circumstances, treating such topics as how toevaluate the probability an insurance company will be bankrupted, thelifetime of a redundant system, and the waiting time in a queue. .Well-grounded, unique mathematical evaluation methods of basicprobability characteristics concerned with rare events are presented,which can be employed in real applications, as the volume alsocontains relevant numerical and Monte Carlo methods. The variousexamples, tables, figures and algorithms will also be appreciated...Audience:. This work will be useful to graduate students,researchers and specialists interested in applied probability,simulation and operations research.
出版日期Book 1997
關(guān)鍵詞algorithm; algorithms; calculus; operations research; reliability; risk analysis; simulation; system; qualit
版次1
doihttps://doi.org/10.1007/978-94-017-1693-2
isbn_softcover978-90-481-4868-4
isbn_ebook978-94-017-1693-2
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書目名稱Geometric Sums: Bounds for Rare Events with Applications影響因子(影響力)




書目名稱Geometric Sums: Bounds for Rare Events with Applications影響因子(影響力)學(xué)科排名




書目名稱Geometric Sums: Bounds for Rare Events with Applications網(wǎng)絡(luò)公開度




書目名稱Geometric Sums: Bounds for Rare Events with Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Sums: Bounds for Rare Events with Applications被引頻次




書目名稱Geometric Sums: Bounds for Rare Events with Applications被引頻次學(xué)科排名




書目名稱Geometric Sums: Bounds for Rare Events with Applications年度引用




書目名稱Geometric Sums: Bounds for Rare Events with Applications年度引用學(xué)科排名




書目名稱Geometric Sums: Bounds for Rare Events with Applications讀者反饋




書目名稱Geometric Sums: Bounds for Rare Events with Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:05 | 只看該作者
地板
發(fā)表于 2025-3-22 05:34:16 | 只看該作者
5#
發(fā)表于 2025-3-22 12:14:42 | 只看該作者
,Generalized Rényi Theorem,nsider the case where the d.f. . of summands in the underlying geometric sum may vary together with parameter . of the corresponding geometric distribution. Although the limiting results are ., they can easily be stated in the form of .. This is partly done in this chapter but generally this problem
6#
發(fā)表于 2025-3-22 15:51:31 | 只看該作者
Two-Sided Bounds,estimates of . . by the so-called test function method. The bounds are derived for several particular cases (where the summands satisfy the Cramér condition, have heavy tails, etc.) and they are stated in the form ready for numerical calculations, revealing tail behaviour of . .(.) and giving explic
7#
發(fā)表于 2025-3-22 17:30:13 | 只看該作者
Metric Bounds,s are stated in a so-called . where a certain distance between an unknown d.f. . .(.) and some known distribution (exponential, Laplace, or their multivariate analogies) is estimated. Short motivation of this approach is given in Section 5.1. Section 5.2 contains bounds in terms of an auxiliary .-me
8#
發(fā)表于 2025-3-22 22:07:57 | 只看該作者
Ruin Probability,In this chapter, we treat the following fairly new topics. First, we find the initial capital securing a prescribed risk level when the relative safety loading tends to O. Second, we derive two-sided bounds of ruin probability in the cases where claim sizes have light and heavy tails. Third, we obta
9#
發(fā)表于 2025-3-23 04:18:08 | 只看該作者
Reliability Regenerative Models,generative processes. Such processes play a noticeable role in the theory of random processes and have many applications in biology, queueing, reliability, Markov chains, risk theory, simulation, etc. Typically, we study . taking reliability regenerative models as an example where such events can be
10#
發(fā)表于 2025-3-23 06:16:09 | 只看該作者
https://doi.org/10.1007/978-94-017-1693-2algorithm; algorithms; calculus; operations research; reliability; risk analysis; simulation; system; qualit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 乌拉特中旗| 厦门市| 定边县| 光泽县| 盐源县| 上饶县| 任丘市| 九江市| 涞水县| 额敏县| 梅河口市| 新沂市| 台湾省| 乐业县| 且末县| 南丹县| 万荣县| 常宁市| 时尚| 墨竹工卡县| 沁水县| 邻水| 桦南县| 东城区| 新宁县| 昌都县| 花莲县| 上思县| 陇西县| 岢岚县| 浏阳市| 永安市| 兰西县| 大渡口区| 天祝| 阳谷县| 林州市| 聊城市| 嘉兴市| 东乡县|