找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structures of Information; Frank Nielsen Book 2019 Springer Nature Switzerland AG 2019 Hessian Information Geometry.Shape Space.

[復(fù)制鏈接]
樓主: Fuctionary
11#
發(fā)表于 2025-3-23 10:41:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,he coordinates of a parametric model are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine as well. We illustrate our approach using models belonging to deformed exponential families, and give a simple and precise characterization for the rho-tau metric to become Hessian.
12#
發(fā)表于 2025-3-23 14:34:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,-tau divergence. It depends only on the product . of the derivatives of . and .. Hence, once the metric tensor is fixed still some freedom is left to manipulate the geometry. We call this the .. A sufficient condition for the existence of a dually flat geometry is established. It is shown that, if t
15#
發(fā)表于 2025-3-24 03:15:40 | 只看該作者
A Class of Non-parametric Deformed Exponential Statistical Models,t zero. This class generalizes the class introduced by N.J.?Newton. We discuss the convexity and regularity of the normalization operator, the form of the deformed statistical divergences and their convex duality, the properties of the escort densities, and the affine manifold structure of the stati
16#
發(fā)表于 2025-3-24 10:01:21 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:37 | 只看該作者
Monte Carlo Information-Geometric Structures,pect to any statistical divergence like the Kullback–Leibler (KL) divergence or the Hellinger divergence. When equipping a statistical manifold with the KL divergence, the induced manifold structure is dually flat, and the KL divergence between distributions amounts to an equivalent Bregman divergen
19#
發(fā)表于 2025-3-24 22:47:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钟山县| 抚顺市| 西藏| 临洮县| 军事| 太仆寺旗| 瑞昌市| 沙田区| 丁青县| 霍邱县| 襄垣县| 泗阳县| 临邑县| 新建县| 泰州市| 介休市| 囊谦县| 漾濞| 贵南县| 神农架林区| 泸定县| 长兴县| 拉萨市| 光山县| 饶阳县| 宁明县| 张掖市| 建平县| 陆丰市| 玉田县| 宜都市| 文山县| 舒兰市| 垣曲县| 天津市| 余姚市| 建阳市| 那坡县| 东乌珠穆沁旗| 托克逊县| 蚌埠市|