找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structures of Information; Frank Nielsen Book 2019 Springer Nature Switzerland AG 2019 Hessian Information Geometry.Shape Space.

[復(fù)制鏈接]
樓主: Fuctionary
11#
發(fā)表于 2025-3-23 10:41:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,he coordinates of a parametric model are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine as well. We illustrate our approach using models belonging to deformed exponential families, and give a simple and precise characterization for the rho-tau metric to become Hessian.
12#
發(fā)表于 2025-3-23 14:34:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:46 | 只看該作者
Rho-Tau Embedding of Statistical Models,-tau divergence. It depends only on the product . of the derivatives of . and .. Hence, once the metric tensor is fixed still some freedom is left to manipulate the geometry. We call this the .. A sufficient condition for the existence of a dually flat geometry is established. It is shown that, if t
15#
發(fā)表于 2025-3-24 03:15:40 | 只看該作者
A Class of Non-parametric Deformed Exponential Statistical Models,t zero. This class generalizes the class introduced by N.J.?Newton. We discuss the convexity and regularity of the normalization operator, the form of the deformed statistical divergences and their convex duality, the properties of the escort densities, and the affine manifold structure of the stati
16#
發(fā)表于 2025-3-24 10:01:21 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:37 | 只看該作者
Monte Carlo Information-Geometric Structures,pect to any statistical divergence like the Kullback–Leibler (KL) divergence or the Hellinger divergence. When equipping a statistical manifold with the KL divergence, the induced manifold structure is dually flat, and the KL divergence between distributions amounts to an equivalent Bregman divergen
19#
發(fā)表于 2025-3-24 22:47:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:22:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河间市| 濉溪县| 杭锦后旗| 周宁县| 克什克腾旗| 普兰县| 黔西县| 枣庄市| 大石桥市| 灌阳县| 安阳县| 玛纳斯县| 宾川县| 林口县| 河西区| 江西省| 陆良县| 化德县| 沈丘县| 玉门市| 大洼县| 石城县| 金川县| 敖汉旗| 宁波市| 蕲春县| 香格里拉县| 元阳县| 伊吾县| 玉屏| 乌苏市| 成安县| 长春市| 泰兴市| 邵阳县| 陆丰市| 吉隆县| 阿勒泰市| 内丘县| 福泉市| 延安市|