找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp

[復制鏈接]
樓主: MASS
41#
發(fā)表于 2025-3-28 16:18:32 | 只看該作者
Kevin McDermott,Vítězslav Sommerrs, which represent the objects of interest. In the second type, the data describe the similarities (or dissimilarities) of objects that cannot be digitized or hidden. The output of a DR processing with an input of the first type is a low-dimensional data set, having the same cardinality as the inpu
42#
發(fā)表于 2025-3-28 22:45:20 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:12 | 只看該作者
44#
發(fā)表于 2025-3-29 04:32:41 | 只看該作者
45#
發(fā)表于 2025-3-29 09:24:38 | 只看該作者
46#
發(fā)表于 2025-3-29 13:27:20 | 只看該作者
Jozef Lacko,Ladislav Kusňír,Ivan Slameňetween the pairs of all neighbors of each point in the data set. Since the method keeps the local maximum variance in dimensionality reduction processing, it is called maximum variance unfolding (MVU). Like multidimensional scaling (MDS), MVU can be applied to the cases that only the local similarit
47#
發(fā)表于 2025-3-29 18:25:25 | 只看該作者
48#
發(fā)表于 2025-3-29 20:02:42 | 只看該作者
49#
發(fā)表于 2025-3-30 00:05:30 | 只看該作者
https://doi.org/10.1007/978-3-322-82834-7n a low-dimentional manifold .. Let . be the coordinate mapping on . so that . = .(.)is a DR of .. Each component of the coordinate mapping . is a linear function on .. Hence, all components of . nearly reside on the numerically null space of the Laplace-Beltrsmi operator on .. In Leigs method, a La
50#
發(fā)表于 2025-3-30 07:07:39 | 只看該作者
https://doi.org/10.1007/978-1-4612-0553-1 conceptual framework of HLLE may be viewed as a modification of the Laplacian Eigenmaps framework. Let . be the observed high-dimensional data which reside on a low-dimentional manifold . and . be the coordinate mapping on . so that . = .(.)is a DR of .. In Laplacian eigenmaps method, . is found in
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高台县| 通化县| 上犹县| 波密县| 微山县| 荆门市| 新昌县| 荆州市| 秦皇岛市| 葵青区| 涪陵区| 铁岭市| 东城区| 汕头市| 东乡| 广丰县| 泰顺县| 黔江区| 德令哈市| 灌阳县| 常山县| 菏泽市| 乃东县| 肥乡县| 五莲县| 堆龙德庆县| 册亨县| 托克逊县| 遵化市| 龙江县| 余干县| 如皋市| 漳平市| 广元市| 麦盖提县| 乌审旗| 象山县| 扎兰屯市| 类乌齐县| 改则县| 长宁县|