找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structure of Chemistry-Relevant Graphs; Zigzags and Central Michel-Marie Deza,Mathieu Dutour Sikiri?,Mikhail I Book 2015 The Edi

[復(fù)制鏈接]
樓主: 使無罪
11#
發(fā)表于 2025-3-23 10:46:35 | 只看該作者
Zigzags and Railroads of Spheres , and ,,We consider the zigzag and railroad structures of .-regular plane graphs and, especially, graphs ., i.e., ..-spheres, where ., ., or .. The case . has been treated in previous Chapter.
12#
發(fā)表于 2025-3-23 14:32:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:48:43 | 只看該作者
14#
發(fā)表于 2025-3-24 01:58:06 | 只看該作者
,Goldberg–Coxeter Construction and?Parametrization,In this chapter, we consider parametrization and, especially, one with . complex parameter, i.e., the .. (a generalization of a simplicial subdivision of Dodecahedron considered in [.] and [.]), producing a plane graph from any .- or .-regular plane graph . for integer parameters .. See the main features of .-construction in Table?..
15#
發(fā)表于 2025-3-24 05:14:45 | 只看該作者
16#
發(fā)表于 2025-3-24 10:35:06 | 只看該作者
,The Self in Mu’tazilah Thought,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
17#
發(fā)表于 2025-3-24 11:45:00 | 只看該作者
Zigzags of Polytopes and Complexes,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
18#
發(fā)表于 2025-3-24 15:36:49 | 只看該作者
19#
發(fā)表于 2025-3-24 21:06:32 | 只看該作者
,The Self in Mu’tazilah Thought,-polytopes (see [.]), we generalize the notion of zigzag circuits on complexes and compute the zigzag structure for several interesting families of .-polytopes, including semiregular, regular-faced, Wythoff Archimedean ones, Conway’s .-polytopes, half-cubes, and folded cubes.
20#
發(fā)表于 2025-3-25 01:58:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂宁市| 内黄县| 临潭县| 罗田县| 宜章县| 佛坪县| 台东市| 霍林郭勒市| 南投县| 霍邱县| 万山特区| 鄂托克前旗| 民县| 密云县| 元阳县| 辛集市| 昔阳县| 安溪县| 临泉县| 嘉荫县| 南溪县| 昌黎县| 丰都县| 铁岭县| 洞头县| 丹凤县| 南江县| 富顺县| 历史| 安远县| 天等县| 兰坪| 天镇县| 济宁市| 稷山县| 肇庆市| 祁阳县| 汾阳市| 安吉县| 启东市| 福鼎市|