找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 51568|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:29:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form
編輯Martin Wechselberger
視頻videohttp://file.papertrans.cn/384/383610/383610.mp4
概述First of its kind to discuss geometric singular perturbation theory in a coordinate-independent setting.Serves as an accessible entry point into the study of multiple time-scale dynamical systems.Cove
叢書名稱Frontiers in Applied Dynamical Systems: Reviews and Tutorials
圖書封面Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form;  Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth
描述.This volume provides?a comprehensive review of multiple-scale dynamical systems.?Mathematical models of such multiple-scale systems are considered singular perturbation problems, and?this volume?focuses?on the geometric approach known as Geometric Singular Perturbation Theory (GSPT)...It is the first of its kind?that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of?biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with?an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems .beyond the standard form..?..The contents cover a general framework for this?.GSPT beyond the standard form .including .canard theory., concrete applications, and instructive qualitative models.?It contains many illustrations and?key pointers tothe existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view.?..Martin Wechselberger is Professor at the School of Mathematics & Statist
出版日期Book 2020
關(guān)鍵詞multiple scales; singular perturbations; differential equations; invariant manifolds; Fenichel Theory; Ca
版次1
doihttps://doi.org/10.1007/978-3-030-36399-4
isbn_softcover978-3-030-36398-7
isbn_ebook978-3-030-36399-4Series ISSN 2364-4532 Series E-ISSN 2364-4931
issn_series 2364-4532
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form影響因子(影響力)




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form影響因子(影響力)學(xué)科排名




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form網(wǎng)絡(luò)公開度




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form被引頻次




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form被引頻次學(xué)科排名




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form年度引用




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form年度引用學(xué)科排名




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form讀者反饋




書目名稱Geometric Singular Perturbation Theory Beyond the Standard Form讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:13:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:37:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:47:47 | 只看該作者
Pseudo Singularities and Canards,utputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes surprising, counter-intuitive behaviour. We start with a couple of examples to motivate the development of the corresponding theory.
5#
發(fā)表于 2025-3-22 08:59:07 | 只看該作者
6#
發(fā)表于 2025-3-22 13:01:39 | 只看該作者
https://doi.org/10.1057/9781137315762utputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes surprising, counter-intuitive behaviour. We start with a couple of examples to motivate the development of the corresponding theory.
7#
發(fā)表于 2025-3-22 20:56:50 | 只看該作者
Introduction,s reflect these multiple-scale features as well. Mathematical models of such multiple-scale systems are considered singular perturbation problems with two-scale problems as the most prominent. Singular perturbation theory studies systems featuring a small perturbation parameter reflecting the scale
8#
發(fā)表于 2025-3-23 00:41:51 | 只看該作者
Loss of Normal Hyperbolicity,tem to switch between slow and fast dynamics as observed in many relaxation oscillator models; see Chap. .. Geometrically, loss of normal hyperbolicity occurs generically along (a union of) codimension-one submanifold(s) of . where a nontrivial eigenvalue of the layer problem crosses the imaginary a
9#
發(fā)表于 2025-3-23 01:28:17 | 只看該作者
Pseudo Singularities and Canards,o far: .Partial answers to the above questions can be found in classic . [.] which focuses on understanding significant changes in dynamical systems outputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes s
10#
發(fā)表于 2025-3-23 06:48:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江源县| 迭部县| 丰城市| 顺昌县| 沙洋县| 义乌市| 镇巴县| 营口市| 灵寿县| 商河县| 丽水市| 白河县| 普格县| 巴马| 永嘉县| 五寨县| 米脂县| 平远县| 张家港市| 武胜县| 金溪县| 阿克苏市| 安远县| 磴口县| 长顺县| 牙克石市| 新昌县| 桃园县| 湘潭县| 普兰店市| 蒲城县| 吴桥县| 松阳县| 绍兴县| 汉川市| 山东| 台安县| 黎川县| 九龙城区| 荥阳市| 万盛区|