找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer

[復(fù)制鏈接]
查看: 14514|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:19:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Representation Theory and Gauge Theory
副標(biāo)題Cetraro, Italy 2018
編輯Alexander Braverman,Michael Finkelberg,Alexei Oblo
視頻videohttp://file.papertrans.cn/384/383602/383602.mp4
概述Provides an update on the current state of research in some key areas of geometric representation theory and gauge theory.Features lectures authored by leading researchers in the area.Each lecture is
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Representation Theory and Gauge Theory; Cetraro, Italy 2018 Alexander Braverman,Michael Finkelberg,Alexei Oblo Book 2019 Springer
描述.This book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg’s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut’s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov‘s notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers.?.
出版日期Book 2019
關(guān)鍵詞Braid Groups and Markov Trace; Coulomb Branch of Quantum Gauge Theories; Hecke Correspondences Between
版次1
doihttps://doi.org/10.1007/978-3-030-26856-5
isbn_softcover978-3-030-26855-8
isbn_ebook978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Geometric Representation Theory and Gauge Theory影響因子(影響力)




書目名稱Geometric Representation Theory and Gauge Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Representation Theory and Gauge Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory被引頻次




書目名稱Geometric Representation Theory and Gauge Theory被引頻次學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory年度引用




書目名稱Geometric Representation Theory and Gauge Theory年度引用學(xué)科排名




書目名稱Geometric Representation Theory and Gauge Theory讀者反饋




書目名稱Geometric Representation Theory and Gauge Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:39 | 只看該作者
0075-8434 atrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration forPhD students and researchers.?.978-3-030-26855-8978-3-030-26856-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 03:01:43 | 只看該作者
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures, we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d .?=?4 quantum gauge theories (of cotangent type) is give
地板
發(fā)表于 2025-3-22 06:25:20 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:04 | 只看該作者
Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures,heor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d .?=?4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.
7#
發(fā)表于 2025-3-22 18:06:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:59:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:03:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都昌县| 南溪县| 桦南县| 诸暨市| 团风县| 循化| 汉中市| 温宿县| 绥芬河市| 西畴县| 六枝特区| 墨江| 缙云县| 昌邑市| 宁都县| 永平县| 闽清县| 开化县| 澎湖县| 班戈县| 项城市| 克拉玛依市| 揭阳市| 江孜县| 宜春市| 巨鹿县| 重庆市| 通许县| 延安市| 南和县| 澎湖县| 桓仁| 舒兰市| 彭州市| 吉木萨尔县| 日喀则市| 沙湾县| 富锦市| 深圳市| 平南县| 仁怀市|