找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Quantization and Quantum Mechanics; J?drzej ?niatycki Book 1980 Springer-Verlag New York Inc. 1980 Quantenmechanik.Quantisierung

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:38:31 | 只看該作者
32#
發(fā)表于 2025-3-27 05:01:18 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:46 | 只看該作者
34#
發(fā)表于 2025-3-27 11:44:01 | 只看該作者
Rilka Dragneva,Kataryna WolczukThe phase space description of classical mechanics due to Hamilton is the starting point of the geometric quantization scheme. A brief review of Hamiltonian dynamics, formulated in the language of differential geometry, is given here in order to establish the notation.
35#
發(fā)表于 2025-3-27 14:04:19 | 只看該作者
36#
發(fā)表于 2025-3-27 19:33:44 | 只看該作者
EU Influence Beyond ConditionalityThe phase space χ of a single particle is isomorphic to R.. An isomorphism χ→R. is defined by the components q., q., q. of the position vector . and the components p., p., p. the linear momentum . with respect to some inertial frame. The Lagrange bracket is given by
37#
發(fā)表于 2025-3-27 23:38:05 | 只看該作者
38#
發(fā)表于 2025-3-28 02:28:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:34:41 | 只看該作者
Quantization,We describe here the process of quantizing functions f on (X, ω) which generate one-parameter groups ?.. of canonical transformations such that the pair (.?. .(F), F) of polarizations is strongly admissible.
40#
發(fā)表于 2025-3-28 10:31:33 | 只看該作者
,Schr?dinger Representation,The phase space χ of a single particle is isomorphic to R.. An isomorphism χ→R. is defined by the components q., q., q. of the position vector . and the components p., p., p. the linear momentum . with respect to some inertial frame. The Lagrange bracket is given by
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通城县| 柳河县| 关岭| 昌都县| 桦川县| 垣曲县| 聊城市| 渝中区| 浦北县| 喀喇沁旗| 方城县| 获嘉县| 楚雄市| 沂南县| 肃宁县| 天全县| 赤城县| 彭州市| 正定县| 咸宁市| 石泉县| 肇州县| 株洲县| 师宗县| 内丘县| 高碑店市| 桑日县| 新竹市| 河东区| 娄烦县| 浮山县| 沭阳县| 雅江县| 周至县| 鄂温| 和平区| 昌吉市| 天镇县| 东光县| 台安县| 新沂市|