找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
31#
發(fā)表于 2025-3-26 21:17:29 | 只看該作者
,Iterative Methods for Zeros of Ф – Accretive-Type Operators,In this chapter, we continue to apply the Mann iteration method introduced in Chapter 6. Here, we use it to approximate the zeros of . operators (and to approximate fixed points of ..
32#
發(fā)表于 2025-3-27 03:09:22 | 只看該作者
33#
發(fā)表于 2025-3-27 07:32:52 | 只看該作者
34#
發(fā)表于 2025-3-27 11:02:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:56:18 | 只看該作者
ESD Design and Analysis Handbooktudy of iterative algorithms for nonlinear operators in various Banach spaces..In this chapter, we introduce the classes of . and . spaces, and in Chapter 2, we shall introduce the class of .. All the results presented in these two chapters are well-known and standard and can be found in several boo
36#
發(fā)表于 2025-3-27 19:26:48 | 只看該作者
Implementing an Auditing Program,r product, ?.,.?. In this chapter, we present the notion of . which will provide us with a pairing between elements of a normed space . and elements of its dual space .*, which we shall also denote by ?.,.? and will serve as a suitable analogue of the inner product in Hilbert spaces.
37#
發(fā)表于 2025-3-28 01:58:41 | 只看該作者
ESD Protection for RF Circuits,that certain geometric properties which characterize Hilbert spaces (e.g., the existence of . or equivalently the .; and the fact that the . or . in Hilbert spaces is Lipschitz .) make certain problems posed in Hilbert spaces . straightforward and relatively easy to solve. In several applications, h
38#
發(fā)表于 2025-3-28 02:06:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:14:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜良县| 岳西县| 石泉县| 正安县| 兴海县| 嘉义市| 合作市| 水富县| 青川县| 钟山县| 甘肃省| 泽普县| 安乡县| 抚远县| 康马县| 新建县| 车致| 陵水| 台江县| 怀仁县| 邓州市| 乌鲁木齐县| 南昌市| 沿河| 通州市| 芒康县| 奉贤区| 疏勒县| 固安县| 光泽县| 晴隆县| 保德县| 崇州市| 和林格尔县| 南漳县| 涿鹿县| 东乡县| 青神县| 都兰县| 南投县| 祁东县|