找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; GPPEPDEs, Palinuro, Filippo Gazzola,Kazuhiro Ishige,Paolo Salani Conference proceed

[復(fù)制鏈接]
樓主: 戲弄
11#
發(fā)表于 2025-3-23 13:00:03 | 只看該作者
Schirmd?mpfung eines DrahtgeflechtesThe Phragmén-Lindel?f theorem is established for viscosity solutions of fully nonlinear second order elliptic equations in a half space of . with a dynamical boundary condition.
12#
發(fā)表于 2025-3-23 15:43:57 | 只看該作者
,Metallgeh?use mit Magnetmaterialien,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
13#
發(fā)表于 2025-3-23 19:18:03 | 只看該作者
14#
發(fā)表于 2025-3-24 01:36:27 | 只看該作者
https://doi.org/10.1007/978-3-319-56330-5We consider the second or higher-order Rellich inequalities on the whole space .. In spite of the lack of the Poincaré inequality on the whole space, we show that the higher-order Rellich inequalities with optimal constants can be improved, by adding explicit remainder terms to the inequalities.
15#
發(fā)表于 2025-3-24 05:29:41 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:45:48 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:04 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:27 | 只看該作者
Entire Solutions to Generalized Parabolic ,-Hessian Equations,In this paper, we deal with entire solutions to the generalized parabolic .-Hessian equation of the form . in .. We prove that for ., any strictly convex-monotone solution . to . in . must be a linear function of . plus a quadratic polynomial of ., under some assumptions on . and some growth conditions on ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶上县| 塘沽区| 延吉市| 郎溪县| 修武县| 长海县| 淮北市| 大丰市| 积石山| 千阳县| 岳阳县| 桃园市| 华安县| 南通市| 梅州市| 平潭县| 梧州市| 嵊州市| 洪雅县| 沛县| 依安县| 鄂托克前旗| 库尔勒市| 安塞县| 克什克腾旗| 石渠县| 临城县| 岫岩| 北宁市| 西峡县| 万宁市| 枣强县| 长海县| 金门县| 旺苍县| 麻栗坡县| 克东县| 冀州市| 宁波市| 金溪县| 黄石市|