找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties for Parabolic and Elliptic PDE‘s; Rolando Magnanini,Shigeru Sakaguchi,Angelo Alvino Book 2013 Springer-Verlag Italia

[復(fù)制鏈接]
樓主: 輕佻
41#
發(fā)表于 2025-3-28 18:34:11 | 只看該作者
42#
發(fā)表于 2025-3-28 21:39:12 | 只看該作者
Measurements on High-Temperature SteelsLet .:=?.+. be a critical Schr?dinger operator on ..(..), where .≥3 and . is a radially symmetric function decaying quadratically at the space infinity. We study the optimal decay rate of the operator norm of the Schr?dinger heat semigroup .. from ..(..) to ..(..) (2≤.≤∞).
43#
發(fā)表于 2025-3-29 00:49:22 | 只看該作者
Conference proceedings 20081st editionA regular variation of a bounded domain in the Euclidean space is considered. The perturbation formula for the eigenvalue of an operator arising in the Maxwell equation under this type of domain variation is given.
44#
發(fā)表于 2025-3-29 03:07:46 | 只看該作者
Metal Housing with Magnetic MaterialsIn this paper, we obtain a mountain pass characterization of ground state solutions for some class of elliptic equations in ?. with nonlinearities in the critical (exponential) growth range.
45#
發(fā)表于 2025-3-29 09:05:29 | 只看該作者
46#
發(fā)表于 2025-3-29 11:57:06 | 只看該作者
Power Concavity for Solutions of Nonlinear Elliptic Problems in Convex Domains,We investigate convexity properties of solutions to elliptic Dirichlet problems in convex domains. In particular we give conditions on the operator . such that a suitable power of a positive solution . of a fully nonlinear equation .(.,.,.,...)=0 in a convex domain ., vanishing on ., is concave.
47#
發(fā)表于 2025-3-29 15:58:43 | 只看該作者
48#
發(fā)表于 2025-3-29 22:56:16 | 只看該作者
Geometric Analysis of Fractional Phase Transition Interfaces,We discuss some recent results on phase transition models driven by nonlocal operators, also in relation with their limit (either local or nonlocal) interfaces.
49#
發(fā)表于 2025-3-29 23:56:08 | 只看該作者
50#
發(fā)表于 2025-3-30 06:59:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦溪县| 黎城县| 沈丘县| 屏东市| 南充市| 九台市| 玉树县| 西吉县| 芦溪县| 马关县| 托克托县| 绥德县| 即墨市| 镇康县| 闸北区| 大新县| 青铜峡市| 邢台县| 辛集市| 政和县| 翁源县| 吐鲁番市| 衡阳市| 曲松县| 大厂| 镇坪县| 西藏| 九龙城区| 密山市| 塔河县| 新巴尔虎右旗| 类乌齐县| 格尔木市| 岚皋县| 百色市| 武功县| 黎平县| 慈利县| 金寨县| 平陆县| 台东市|