找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: Traction
11#
發(fā)表于 2025-3-23 13:23:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:16:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:39 | 只看該作者
Structure-Preserving Implementation,not deteriorate the correct qualitative behaviour of the solution.We study multiple time stepping strategies, the effect of round-off in long-time integrations, and the efficient solution of nonlinear systems arising in implicit integration schemes.
15#
發(fā)表于 2025-3-24 06:16:42 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:32 | 只看該作者
17#
發(fā)表于 2025-3-24 14:08:13 | 只看該作者
dBASE IV Lernen am Konkreten Beispielsses of numerical methods. We start with Runge–Kutta and collocation methods, and we introduce discontinuous collocation methods, which cover essentially all high-order implicit Runge–Kutta methods of interest. We then treat partitioned Runge–Kutta methods and Nystr?m methods, which can be applied t
18#
發(fā)表于 2025-3-24 17:38:48 | 只看該作者
https://doi.org/10.1007/978-3-322-92882-5ed Runge–Kutta methods, and composition methods by using the notion of rooted trees and B-series. These ideas lead to algebraic structures which have recently found interesting applications in quantum field theory. The chapter terminates with the Baker- Campbell-Hausdorff formula, which allows anoth
19#
發(fā)表于 2025-3-24 19:31:26 | 只看該作者
Arbeitsbereich und Datenausgabe,n manifolds. Our investigation will follow two directions. We first investigate which of the methods introduced in Chap. II conserve invariants automatically. We shall see that most of them conserve linear invariants, a few of them quadratic invariants, and none of them conserves cubic or general no
20#
發(fā)表于 2025-3-25 00:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥东县| 海原县| 恩平市| 克山县| 思茅市| 邯郸市| 赤城县| 乐业县| 永顺县| 溧水县| 丁青县| 仙游县| 黔西| 雷波县| 津市市| 塘沽区| 南川市| 清水河县| 芒康县| 库伦旗| 长葛市| 综艺| 浮梁县| 邯郸市| 元朗区| 井冈山市| 甘孜| 颍上县| 尤溪县| 当涂县| 龙川县| 丰都县| 贡嘎县| 黔南| 文山县| 澄迈县| 海晏县| 浮山县| 寻乌县| 麻城市| 顺昌县|