找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 20021st edition Springer-Verlag Ber

[復(fù)制鏈接]
樓主: 滲漏
41#
發(fā)表于 2025-3-28 17:35:00 | 只看該作者
Die übrigen Kleearten bzw. Futterleguminosenthem. In particular, we study projection methods and methods based on local coordinates of the manifold defined by the invariants. We discuss in some detail the case where the manifold is a Lie group.
42#
發(fā)表于 2025-3-28 20:09:35 | 只看該作者
Curt F. Kollbrunner,Nikola Hajdinion, which is a formal series in powers of the step size, has to be truncated. The error, induced by such a truncation, can be made exponentially small, and the results remain valid on exponentially long time intervals.
43#
發(fā)表于 2025-3-29 01:54:04 | 只看該作者
44#
發(fā)表于 2025-3-29 06:36:13 | 只看該作者
45#
發(fā)表于 2025-3-29 07:22:14 | 只看該作者
Examples and Numerical Experiments,ffects (on a different scale) occur with more sophisticated higher-order integration schemes. The experiments presented here should serve as a motivation for the theoretical and practical investigations of later chapters. The reader is encouraged to repeat the experiments or to invent similar ones.
46#
發(fā)表于 2025-3-29 11:28:13 | 只看該作者
47#
發(fā)表于 2025-3-29 18:32:16 | 只看該作者
Order Conditions, Trees and B-Series,recently found interesting applications in quantum field theory. The chapter terminates with the Baker-CampbellHausdorff formula, which allows another access to the order properties of composition and splitting methods.
48#
發(fā)表于 2025-3-29 22:12:06 | 只看該作者
Symmetric Integration and Reversibility,Runge-Kutta and composition methods, and we show how standard approaches for solving differential equations on manifolds can be symmetrized. A theoretical explanation of the excellent longtime behaviour of symmetric methods applied to reversible differential equations will be given in Chap. XI.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叙永县| 博湖县| 五大连池市| 苏尼特右旗| 尼木县| 黎平县| 常宁市| 天等县| 法库县| 合川市| 台中市| 赤水市| 永嘉县| 建平县| 旺苍县| 嘉峪关市| 固始县| 玛沁县| 潍坊市| 普格县| 游戏| 化州市| 东乡族自治县| 长海县| 许昌市| 务川| 辉南县| 鹤山市| 井研县| 镇远县| 大渡口区| 子洲县| 荃湾区| 东乡| 南部县| 旌德县| 兰考县| 胶南市| 长葛市| 锦州市| 正安县|