找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Modelling; Dagstuhl 1993 H. Hagen,G. Farin,H. Noltemeier Conference proceedings 1995 Springer-Verlag/Wien 1995 Nurbs.Spline.Splin

[復(fù)制鏈接]
樓主: INFER
11#
發(fā)表于 2025-3-23 12:59:32 | 只看該作者
Localized Radial Basis Methods Using Rational Triangle Patches,these radial basis methods is that they are not local and they are computationally expensive and unstable if there are a large number of data points. We present a localized interpolation method that involves partitioning the data into arbitrary overlapping triangular regions based on arbitrary point
12#
發(fā)表于 2025-3-23 14:00:25 | 只看該作者
Repeated Knots in Least Squares Multiquadric Functions,ation of scattered data by multiquadric functions. In this paper we observe that this leads naturally to the inclusion of derivatives of the multiquadric basis function in the approximation, and give an algorithm for accomplishing this. A comparison of the results obtained with this algorithm and th
13#
發(fā)表于 2025-3-23 21:30:49 | 只看該作者
14#
發(fā)表于 2025-3-23 23:00:43 | 只看該作者
A Quartic Spline Based on a Variational Approach,tly different variational problem that depends on the input data. The goal is to obtain a spline that may have high second derivatives at the interpolated points and low second derivatives between two consecutive interpolated points. The solution is a .. continuous quartic spline.
15#
發(fā)表于 2025-3-24 02:30:27 | 只看該作者
A Knowledge-Based System for Geometric Design,roblem formulation knowledge serves to classify the problem type according to statements given by the user about geometric data, mathematical representation, criterion function and discrete as well as integral constraints. Problem solution knowledge pertains to the choice of adequate problem solvers
16#
發(fā)表于 2025-3-24 10:09:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:02:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:02 | 只看該作者
,New Work – eine neue Zeit bricht an,lied to show that the Generalized Ball basis of degree . is always unimodal whenever . is odd and is never unimodal whenever . is even except for the cases . = 2, 4. A new proof of the unimodality of the Bernstein basis is also provided.
20#
發(fā)表于 2025-3-25 01:28:13 | 只看該作者
https://doi.org/10.1007/978-3-658-44655-0oth blending and rendering of trimmed patches. This article reviews existing strategies that provide solutions to these problems and presents a new method that uses Coons’ patches for geometric redefinition of trimmed tensor product surfaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 翼城县| 疏附县| 名山县| 察雅县| 泗洪县| 磐石市| 夏邑县| 乌恰县| 玉山县| 建阳市| 扎鲁特旗| 绥化市| 友谊县| 汾西县| 元江| 罗平县| 启东市| 志丹县| 庐江县| 司法| 康乐县| 扶绥县| 吉林市| 黔西县| 西青区| 鄄城县| 舟曲县| 称多县| 泰和县| 朝阳区| 金溪县| 盐池县| 抚州市| 泗水县| 晋宁县| 元氏县| 梁山县| 安溪县| 昭觉县| 碌曲县|